Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear.
View Article and Find Full Text PDFSurgical resection of glioblastoma (GBM) causes brain inflammation that activates and recruits neutrophils (NEs) to residual GBM tissues. NE-based drug delivery using inflammatory chemotaxis is promising for the post-surgical treatment of residual GBM, but its clinical application is limited by the short life span of NEs and lack of in vitro propagation methods. HL60 cells are a type of infinitely multiplying tumor cells that can be induced to differentiate into NE-like cells.
View Article and Find Full Text PDFThe postoperative thrombus attached to the damaged blood vessels severely obstructs drugs from crossing the damaged blood-brain barrier (BBB) and targeting residual glioma cells around surgical margins, leading to glioblastoma (GBM) recurrence. A thrombus-bypassing, BBB-crossing, and surgical margin-targeted nanodrug is needed to address this phenomenon. Encouraged by the intrinsic damaged vascular endothelium chemotaxis of platelets, a platelet membrane-coated nanodrug (PM-HDOX) delivering doxorubicin (DOX) for postoperative GBM treatment is proposed and systematically investigated.
View Article and Find Full Text PDFGlioma is a devastating cancer with a rich vascular network. No anti-angiogenic treatment is available for prolonging the overall survival of glioma patients. Recent studies have demonstrated that the endothelial differentiation of glioma stem cells (GSCs) into glioma-derived endothelial cells (GDECs) may be a novel target for anti-angiogenic therapy in glioma; however, the underlying mechanisms of this process remain unknown.
View Article and Find Full Text PDFObjective: This paper investigated the effects of STAT3 through promoting FOXP1 transcription on proliferation, apoptosis and invasion in glioma cells.
Methods: Quantitative real-time PCR (qRT-PCR) and Western blot assay were administered to assess the mRNA and protein expression levels of STAT3 and FOXP1 in glioma tissues and cells, respectively. Luciferase reporter and Chromatin Immunoprecipitation (ChIP) assays were implemented to determine the correlation between STAT3 and FOXP1.