Publications by authors named "Fabienne MaaSSen"

Human cytomegalovirus (HCMV) is a prototypical β-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways.

View Article and Find Full Text PDF

Even in the era of PCR-based monitoring, prophylaxis, and preemptive therapy, Cytomegalovirus (CMV) viremia remains a relevant cause of non-relapse mortality (NRM) after allogeneic hematopoietic cell transplantation (HCT). However, studies using binary analysis (presence/absence of CMV) reported contradicting data for NRM, overall survival and leukemia relapse. Here, we analyzed CMV replication kinetics in 11 508 whole blood PCR samples of 705 patients with HCT between 2012 and 2017.

View Article and Find Full Text PDF

Comprehensive knockout of HLA class II (HLA-II) β-chain genes is complicated by their high polymorphism. In this study, we developed CRISPR/Cas9 genome editing to simultaneously target HLA-DRB, -DQB1, and -DPB1 through a single guide RNA recognizing a conserved region in exon 2. Abrogation of HLA-II surface expression was achieved in five different HLA-typed, human EBV-transformed B lymphoblastoid cell lines (BLCLs).

View Article and Find Full Text PDF

A pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons.

View Article and Find Full Text PDF