Publications by authors named "Fabienne Lagarde"

By 2040, tire particles (TP) are expected to dominate marine plastic contamination, raising concerns about their effects on marine animals. This study employed a multidisciplinary and multigenerational approach on the Pacific oyster Magallana gigas to investigate the effects of TP and their leachates (LEA). Effects were analyzed at the individual scale, from cellular, molecular, and microbiota changes to reproductive outputs and offspring performance.

View Article and Find Full Text PDF

In this work, we propose a new protocol for producing model microplastics from an industrial polymer and compare it to a conventional method, cryomilling. Polypropylene industrial pellets were chosen due to their widespread production and frequent presence in the environment, making them a notable source of microplastics. Both protocols start with aging under Ultra-Violet light of the pellets but differ in the subsequent mechanical stress applied-strong vs.

View Article and Find Full Text PDF

Pearl farming is crucial for the economy of French Polynesia. However, rearing structures contribute significantly to plastic waste, and the widespread contamination of pearl farming lagoons by microplastics has raised concerns about risks to the pearl industry. This study aimed to evaluate the effects of micro-nanoplastics (MNPs, 0.

View Article and Find Full Text PDF

The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg sediment), DBP (38 μg kg sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers.

View Article and Find Full Text PDF

In the present study, effects of aging MPs of polyethylene (PE) were investigated in the marine mussel Mytilus edulis, commonly used as bioindicator of aquatic ecosystem, using both in vitro and in vivo exposures, using concentrations found in marine waters (0.008, 10 and 100 μg.L).

View Article and Find Full Text PDF

This opinion paper offers a scientific view on the current debate of the place of biodegradable plastics as part of the solution to deal with the growing plastic pollution in the world's soil, aquatic, and marine compartments. Based on the current scientific literature, we focus on the current limits to prove plastic biodegradability and to assess the toxicity of commercially used biobased and biodegradable plastics in natural environments. We also discuss the relevance of biodegradable plastics for selected applications with respect to their use and end of life.

View Article and Find Full Text PDF
Article Synopsis
  • Infants have immature gut ecosystems and are exposed to microplastics (MPs) from various sources, but how these MPs interact with infant gut microbiota is not known.
  • This study explores the effects of chronic exposure to polyethylene microplastics on infant gut microbiota and intestinal health using advanced laboratory techniques.
  • Results showed that exposure to PE MPs led to increased diversity in gut bacteria and higher levels of potentially harmful bacteria, while not significantly affecting gut barrier integrity.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the effects of microplastics (MP) on aquatic organisms, specifically the pearl oyster Pinctada margaritifera, using real plastic waste from pearl farming in French Polynesia.
  • The researchers developed a method to generate MP in the ideal size range of 20-60 μm, crucial for the oysters, but ended up with a significant number of smaller particles, impacting their size distribution.
  • The findings indicate that particle self-assembly complicates accurate size characterization, highlighting the need for precise analysis in ecotoxicological studies to avoid misestimating the ecological impacts of microplastics.
View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells.

View Article and Find Full Text PDF

Plastics pollution in marine environment has become an issue of increasing scientific concern. This work aims to study the temporal and spatial distribution of plastics in sediments from three different Tunisian ecosystems; Rimel Beach, Bizerta lagoon and Ichkeul lake. Sediment sampling was conducted in surface (2 cm) and depth (15 cm) during spring, summer and winter.

View Article and Find Full Text PDF

Diatoms are feedstock for the production of sustainable biocommodities, including biofuel. The biochemical characterization of newly isolated or genetically modified strains is seminal to identify the strains that display interesting features for both research and industrial applications. Biochemical quantification of organic macromolecules cellular quotas are time-consuming methodologies which often require large amount of biological sample.

View Article and Find Full Text PDF

Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP).

View Article and Find Full Text PDF
Article Synopsis
  • Plastic pollution poses significant risks to the environment and wildlife, but the study of plastic additives like Irgafos® 168 is limited.
  • A laboratory investigation detected Irgafos® 168 and its oxidized form in all tested reagents, with higher levels found in plastic containers compared to powders, indicating leaching from packaging.
  • The presence of Irgafos® 168 raises concerns for ecotoxicological studies, as it can skew results, highlighting the need for future research to account for plastic additive contamination in experimental setups.
View Article and Find Full Text PDF

For several decades, use of nanoparticles (NP) on a global scale has been generating new potential sources of organism disruption. Recent studies have shown that NP can cause modifications on the biochemical macromolecular composition of microalgae and raised questions on the toxicity of plastic particles, which are widespread in the aquatic environment. Polystyrene (PS) particles are among the most widely used plastics in the world.

View Article and Find Full Text PDF

The unicellular photosynthetic organisms known as microalgae are becoming one of the most important models for aquatic system studies. Among them, Chlamydomonas reinhardtii is widely used as a bioindicator of pollution or of different changes in the environment. Numerous pollutants are present in aquatic environments, particularly plastics and nanoplastics.

View Article and Find Full Text PDF

Widespread use of nanoparticles for different applications has diffused their presence in the environment, particularly in water. Many studies have been conducted to evaluate their effects on aquatic organisms. Microalgae are at the base of aquatic trophic chains.

View Article and Find Full Text PDF

The aim of the present study was to evaluate the presence and potential toxic effects of plastic fragments (<400 μm) of polyethylene and polypropylene on the Pacific oyster Crassostrea gigas. Oysters were exposed to environmentally relevant concentrations (0, 0.008, 10, 100 μg of particles/L) during 10 days, followed by a depuration period of 10 days in clean seawater.

View Article and Find Full Text PDF

In this work, the artificial photodegradation of polyethylene films was studied in laboratory to compare the fragmentation pathways of this polymer at air and in water. Oxidation, surface mechanical properties, crystallinity and crack propagation were monitored to investigate their influence on fragmentation. Without any external stress, fragmentation only occurred in water despite a higher level of oxidation for films weathered at air.

View Article and Find Full Text PDF

Our understanding of the fate and distribution of micro- and nano- plastics in the marine environment is limited by the intrinsic difficulties of the techniques currently used for the detection, quantification, and chemical identification of small particles in liquid (light scattering, vibrational spectroscopies, and optical and electron microscopies). Here we introduce Raman Tweezers (RTs), namely optical tweezers combined with Raman spectroscopy, as an analytical tool for the study of micro- and nanoplastics in seawater. We show optical trapping and chemical identification of sub-20 μm plastics, down to the 50 nm range.

View Article and Find Full Text PDF

The ubiquitous presence of microplastics (MPs) has been demonstrated in all environmental compartments in the recent years. They are detected in air, freshwater, soil, organisms and particularly in marine ecosystems. Since sediments are known to be the major sink of many organic and inorganic pollutants, the aim of this study was to develop and validate a fast and cheap methodology to assess the MP contamination in intertidal sediments from the Gulf of Biscay (Pays de la Loire region, France).

View Article and Find Full Text PDF

Monitoring the presence of microplastics (MP) in marine organisms is currently of high importance. This paper presents the qualitative and quantitative MP contamination of two bivalves from the French Atlantic coasts: the blue mussel (Mytilus edulis) and the Pacific oyster (Crassostrea gigas). Three factors potentially influencing the contamination were investigated by collecting at different sampling sites and different seasons, organisms both wild and cultivated.

View Article and Find Full Text PDF

Microplastics (MPs) constitute a main environmental issue due to their threat to marine organisms and so far to humans. The lack of a fast standard protocol in MP isolation and identification from living organisms bring to challenge for the science. In this paper, an optimized protocol using potassium hydroxide 10% (KOH 10%; m/v) for digestion of mussel soft tissues (Mytilus edulis) and multi-steps of sedimentation has been developed.

View Article and Find Full Text PDF

In this work, two sets of samples were considered: field samples collected from local waste wood and synthetic samples made by mixing clean wood (including oak, beech, poplar) with typical organic pollutants: creosote, polychlorinated byphenils (PCBs), pentachlorophenol (PCP), cypermethrin, dodecyl dimethyl ammonium chloride (DDAC). Vibrational spectroscopy techniques were tested to detect organic pollutants in wood items. Raman and infrared spectroscopies were showed as fast, non-destructive and non-invasive fingerprint techniques for detection of organic molecules.

View Article and Find Full Text PDF

In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers.

View Article and Find Full Text PDF

The ubiquitous presence and persistency of microplastics (MPs) in aquatic environments are of particular concern since they represent an increasing threat to marine organisms and ecosystems. Great differences of concentrations and/or quantities in field samples have been observed depending on geographical location around the world. The main types reported have been polyethylene, polypropylene, and polystyrene.

View Article and Find Full Text PDF