Publications by authors named "Fabienne Hartmann-Fritsch"

Limited donor sites and poor long-term outcomes with standard treatment for large skin defects remain a huge problem. An autologous, bilayered, laboratory-grown skin substitute (denovoSkin™) was developed to overcome this problem and has shown to be safe in ten pediatric patients in a phase I clinical trial after transplantation. The goal of this article is to report on 48 months long-term results.

View Article and Find Full Text PDF

Background: The management of deep partial-thickness and full-thickness skin defects remains a significant challenge. Particularly with massive defects, the current standard treatment, split-thickness skin grafting, is fraught with donor-site limitations and unsatisfactory long-term outcomes. A novel, autologous, bioengineered skin substitute was developed to address this problem.

View Article and Find Full Text PDF

Autologous bio-engineered dermo-epidermal skin substitutes are a promising treatment for large skin defects such as burns. For their successful clinical application, the graft dressing must protect and support the keratinocyte layer and, in many cases, possess antimicrobial properties. However, silver in many antimicrobial dressings may inhibit keratinocyte growth and differentiation.

View Article and Find Full Text PDF

Background: The treatment of severe full-thickness skin defects represents a significant and common clinical problem worldwide. A bio-engineered autologous skin substitute would significantly reduce the problems observed with today's gold standard.

Methods: Within 15 years of research, the Tissue Biology Research Unit of the University Children's Hospital Zurich has developed autologous tissue-engineered skin grafts based on collagen type I hydrogels.

View Article and Find Full Text PDF

Background: Currently, acellular dermal substitutes used for skin reconstruction are usually covered with split-thickness skin grafts. The goal of this study was to develop an animal model in which such dermal substitutes can be tested under standardized conditions using a bioengineered dermo-epidermal skin graft for coverage.

Methods: Bioengineered grafts consisting of collagen type I hydrogels with incorporated human fibroblasts and human keratinocytes seeded on these gels were produced.

View Article and Find Full Text PDF

Extensive full-thickness skin loss, associated with deep burns or other traumata, represents a major clinical problem that is far from being solved. A promising approach to treat large skin defects is the use of tissue-engineered full-thickness skin analogues with nearly normal anatomy and function. In addition to excellent biological properties, such skin substitutes should exhibit optimal structural and mechanical features.

View Article and Find Full Text PDF

Purpose: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model.

Methods: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model.

View Article and Find Full Text PDF

The Chelonid fibropapilloma-associated herpesvirus (CFPHV; ChHV5) is believed to be the causative agent of fibropapillomatosis (FP), a neoplastic disease of marine turtles. While clinical signs and pathology of FP are well known, research on ChHV5 has been impeded because no cell culture system for its propagation exists. We have cloned a BAC containing ChHV5 in pTARBAC2.

View Article and Find Full Text PDF

Tissue engineering of clinically applicable dermo-epidermal skin substitutes is crucially dependent on the three-dimensional extracellular matrix, supporting the biological function of epidermal and dermal cells. This matrix essentially determines the mechanical stability of these substitutes to allow for safe and convenient surgical handling. Collagen type I hydrogels yield excellent biological functionality, but their mechanical weakness and their tendency to contract and degrade does not allow producing clinically applicable transplants of larger sizes.

View Article and Find Full Text PDF

Purpose: Dermal templates, such as Matriderm® and Integra®, are widely used in plastic and reconstructive surgery, often as two-step procedures. A recent development is the application of thin dermal templates covered with split thickness skin grafts in one-step procedures. In this experimental study, we compare the two thin matrices Matriderm® 1 mm and Integra® Single Layer in a one-step procedure with particular focus on neodermis formation.

View Article and Find Full Text PDF

Background: Extended full thickness skin defects still represent a considerable therapeutic challenge as ideal strategies for definitive autologous coverage are still not available. Tissue engineering of whole skin represents an equally attractive and ambitious novel approach. We have recently shown that laboratory-grown human skin analogues with near normal skin anatomy can be successfully transplanted on immuno-incompetent rats.

View Article and Find Full Text PDF

Background: Tissue engineering of skin with near-normal anatomy is an intriguing novel strategy to attack the still unsolved problem of how to ideally cover massive full-thickness skin defects. After successful production of large, pig cell-derived skin analogues, we now aim at developing an appropriate large animal model for transplantation studies.

Materials And Methods: In four adult Swiss pigs, full-thickness skin defects, measuring 7.

View Article and Find Full Text PDF