During myoblast differentiation, mitochondria undergo numerous changes that are necessary for the progression of the myogenic program. Notably, we previously showed that alteration in mitochondrial activity was able to control the expression of keys regulator of cell cycle withdrawal and terminal differentiation. Here, we assessed whether inhibition of one of the respiratory complexes was a key factor in the regulation of myogenic differentiation in C2C12 cells, and was associated with alteration in reactive oxygen species (ROS) production.
View Article and Find Full Text PDFThyroid hormone is a major regulator of skeletal muscle development and repair, and also a key regulator of mitochondrial activity. We have previously identified a 43 kDa truncated form of the nuclear T3 receptor TRα1 (p43) which stimulates mitochondrial activity and regulates skeletal muscle features. However, its role in skeletal muscle regeneration remains to be addressed.
View Article and Find Full Text PDFBackground: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses.
View Article and Find Full Text PDFCardiolipin (CL) is a phospholipid at the heart of mitochondrial metabolism, which plays a key role in mitochondrial function and bioenergetics. Among mitochondrial activity regulators, SIRT3 plays a crucial role in controlling the acetylation status of many enzymes participating in the energy metabolism in particular concerning lipid metabolism and fatty acid oxidation. Data suggest that possible connection may exist between SIRT3 and CL status that has not been evaluated in skeletal muscle.
View Article and Find Full Text PDFThyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity.
View Article and Find Full Text PDFSirtuin 3 (SIRT3), one of the seven mammalian sirtuins, is a mitochondrial NAD+-dependent deacetylase known to control key metabolic pathways. SIRT3 deacetylases and activates a large number of mitochondrial enzymes involved in the respiratory chain, in ATP production, and in both the citric acid and urea cycles. We have previously shown that the regulation of myoblast differentiation is tightly linked to mitochondrial activity.
View Article and Find Full Text PDFChicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C.
View Article and Find Full Text PDFThe commonly used live attenuated vaccine in ovine brucellosis prophylaxis is Brucella melitensis Rev.1. This vaccine is known to induce antibody responses in vaccinated animals indistinguishable by the current conventional serological tests from those observed in challenged animals.
View Article and Find Full Text PDFBrucella, the causative agent of brucellosis in animals and humans, can survive and proliferate within macrophages. Macrophages mediate mouse resistance to various pathogens through the expression of the Nramp1 gene. The role of this gene in the control of Brucella infection was investigated.
View Article and Find Full Text PDF