Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A.
View Article and Find Full Text PDFThe long noncoding RNA is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether was required for aeschynomenoid nodule formation in . express from chromosome 5 (chr5) () and chr15 () during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of in .
View Article and Find Full Text PDFAmong legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
Several species nodulate the leguminous plant in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in strain ORS3257.
View Article and Find Full Text PDFIn root-nodule symbiosis, rhizobial invasion and nodule organogenesis is host controlled. In most legumes, rhizobia enter through infection threads and nodule primordium in the cortex is induced from a distance. But in dalbergoid legumes like Arachis hypogaea, rhizobia directly invade cortical cells through epidermal cracks to generate the primordia.
View Article and Find Full Text PDFNod factors (NF) were assumed to be indispensable for the establishment of a rhizobium-legume symbiosis until the discovery that certain Bradyrhizobium strains interacting with certain Aeschynomene species lack the canonical nodABC genes required for their synthesis. So far, the molecular dialogue between Aeschynomene and its symbionts remains an open question. Here we report a time course transcriptional analysis of Aeschynomene evenia in response to inoculation with Bradyrhizobium ORS278.
View Article and Find Full Text PDFIn the most studied rhizobium-legume interactions, the host plant supplies the symbiont with homocitrate, an essential co-factor of the nitrogenase enzyme complex, via the expression of a nodule-specific homocitrate synthase FEN1. Photosynthetic bradyrhizobia interacting with Nod factor (NF) dependent and NF-independent Aeschynomene legumes are able to synthesize homocitrate themselves as they contain a nifV gene encoding a homocitrate synthase. Here, we show that in the model strain ORS285, nifV is required for free-living and symbiotic dinitrogen fixation with NF-independent Aeschynomene species.
View Article and Find Full Text PDFAeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea).
View Article and Find Full Text PDFThe legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process.
View Article and Find Full Text PDFNitrogen fixation in the legume-rhizobium symbiosis is a crucial area of research for more sustainable agriculture. Our knowledge of the plant cascade in response to the perception of bacterial Nod factors has increased in recent years. However, the discovery that Nod factors are not involved in the Aeschynomene-Bradyrhizobium spp.
View Article and Find Full Text PDFNutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp.
View Article and Find Full Text PDF• The semi-aquatic legumes belonging to the genus Aeschynomene constitute a premium system for investigating the origin and evolution of unusual symbiotic features such as stem nodulation and the presence of a Nod-independent infection process. This latter apparently arose in a single Aeschynomene lineage. But how this unique Nod-independent group then radiated is not yet known.
View Article and Find Full Text PDFResearch on the nitrogen-fixing symbiosis has been so far focused on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some semi-aquatic Aeschynomene species present the distinctive feature to form nitrogen-fixing nodules on both roots and stems following elicitation by photosynthetic bradyrhizobia that do not produce Nod factors.
View Article and Find Full Text PDFResearch on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp.
View Article and Find Full Text PDFPhotosynthetic Bradyrhizobium strains possess the unusual ability to form nitrogen-fixing nodules on a specific group of legumes in the absence of Nod factors. To obtain insight into the bacterial genes involved in this Nod-independent symbiosis, we screened 15,648 Tn5 mutants of Bradyrhizobium sp. strain ORS278 for clones affected in root symbiosis with Aeschynomene indica.
View Article and Find Full Text PDFLeguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes.
View Article and Find Full Text PDFRNA transcript levels of Arabidopsis plants, infected by the rhizobacterium Pseudomonas thivervalensis (strain MLG45), and axenic control plants were compared using cDNA microarrays representing approximately 14 300 genes. The analysis revealed an increase of defence-related transcripts in the shoots of bacterized plants relative to control (axenic) plants. These modifications of transcript levels were confirmed by physiological experiments.
View Article and Find Full Text PDF