Publications by authors named "Fabienne Bessac"

Atrazine is one of the most widely used herbicide molecules in the triazine family. Despite its interdiction in the European Union in 2004, atrazine and its main degradation products remain among the most frequently found molecules in freshwater reservoirs in many European Union countries. Our study aims in obtaining insight into the desorption process of atrazine from the main soil absorbent material: clay.

View Article and Find Full Text PDF

Metamitron (Meta), an herbicide, and fenhexamid (Fen), a fungicide, are authorized by the European Union to be used in agriculture. This article reports theoretical calculations about Meta and Fen in interaction with a clay surface: a Ca-montmorillonite (Mont). Conformational searches have been performed thanks to Car-Parrinello molecular dynamics simulations from which geometries have been extracted.

View Article and Find Full Text PDF

Atrazine, a pesticide belonging to the s-triazine family, is one of the most employed pesticides. Due to its negative impact on the environment, it has been forbidden within the European Union since 2004 but remains abundant in soils. For these reasons, its behavior in soils and water at the atomic scale is of great interest.

View Article and Find Full Text PDF

Chlordecone (CClO; CAS number 143-50-0) has been used extensively as an organochlorine insecticide but is nowadays banned and listed on annex A in The Stockholm Convention on Persistent Organic Pollutants (POPs). Although experimental evidences of biodegradation of this compound are scarce, several dechlorination products have been proposed by Dolfing et al. (2012) using Gibbs free energy calculations to explore different potential transformation routes.

View Article and Find Full Text PDF

A comprehensive review of quantitative structure-activity relationships (QSAR) allowing the prediction of the fate of organic compounds in the environment from their molecular properties was done. The considered processes were water dissolution, dissociation, volatilization, retention on soils and sediments (mainly adsorption and desorption), degradation (biotic and abiotic), and absorption by plants. A total of 790 equations involving 686 structural molecular descriptors are reported to estimate 90 environmental parameters related to these processes.

View Article and Find Full Text PDF

Following legislation, the assessment of the environmental risks of 30000-100000 chemical substances is required for their registration dossiers. However, their behavior in the environment and their transfer to environmental components such as water or atmosphere are studied for only a very small proportion of the chemical in laboratory tests or monitoring studies because it is time-consuming and/or cost prohibitive. Therefore, the objective of this work was to develop a new methodology, TyPol, to classify organic compounds, and their degradation products, according to both their behavior in the environment and their molecular properties.

View Article and Find Full Text PDF

A selected multireference configuration interaction (CI) method and the corresponding code are presented. It is based on a procedure of localization that permits to obtain well localized occupied and virtual orbitals. Due to the local character of the electron correlation, using local orbitals allows one to neglect long range interactions.

View Article and Find Full Text PDF

We report the synthesis of a niobium cyclopropyl complex, Tp(Me2)NbMe(c-C(3)H(5))(MeCCMe), and show that thermal loss of methane from this compound generates an intermediate that is capable of activating both aliphatic and aromatic C-H bonds. Isotopic labeling, trapping studies, a detailed kinetic analysis, and density functional theory all suggest that the active intermediate is an η(2)-cyclopropene complex formed via β-hydrogen abstraction rather than an isomeric cyclopropylidene species. C-H activation chemistry of this type represents a rather unusual reactivity pattern for η(2)-alkene complexes but is favored in this case by the strain in the C(3) ring which prevents the decomposition of the key intermediate via loss of cyclopropene.

View Article and Find Full Text PDF

The modeling of reactivity in an ionic liquid is examined with DFT and DFT/MM calculations on the S(N)2 intramolecular rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2,5-diphenyl-1,2,3-triazole induced by amines. Experimental research has shown that the reaction occurs in 1-butyl-3-methylimidazolium tetrafluoroborate, and in conventional organic solvents such as acetonitrile with comparable rates. The structure for the reactants, transition states and products for the rate-determining step are optimized, and the energy barrier is computed in three different environments: gas phase, water solvent, and ionic liquid.

View Article and Find Full Text PDF

The geometries and bond dissociation energies of the main group complexes X3B-NX3, X3B-PX3, X3Al-NX3, and X3Al-PX3 (X = H, Me, Cl) and the transition metal complexes (CO)5M-NX3 and (CO)5M-PX3 (M = Cr, Mo, W) have been calculated using gradient-corrected density functional theory at the BP86/TZ2P level. The nature of the donor-acceptor bonds was investigated with an energy decomposition analysis. It is found that the bond dissociation energy is not a good measure for the intrinsic strength of Lewis acidity and basicity because the preparation energies of the fragments may significantly change the trend of the bond strength.

View Article and Find Full Text PDF

Thanks to the use of localized orbitals and the subsequent possibility of neglecting long-range interactions, the linear-scaling methods have allowed to treat large systems at ab initio level. However, the limitation of the number of active orbitals in a complete active space self consistent-field (CASSCF) calculation remains unchanged. The method presented in this paper suggests to divide the system into fragments containing only a small number of active orbitals.

View Article and Find Full Text PDF

Geometries and bond dissociation energies of the complexes Cl(3)B[bond]NH(3) and F(3)B[bond]NH(3) have been calculated using DFT (PW91) and ab initio methods at the MP2 and CCSD(T) levels using large basis sets. The calculations give a larger bond dissociation energy for Cl(3)B[bond]NH(3) than for F(3)B[bond]NH(3). Calculations of the deformation energy of the bonded fragments reveal that the distortion of BCl(3) and BF(3) from the equilibrium geometry to the pyramidal form in the complexes requires nearly the same energy.

View Article and Find Full Text PDF