Introduction: Muscle activity patterns in the residual arm are systematically present during phantom hand movements (PHM) in transhumeral amputees. However, their characteristics have not been directly investigated yet, leaving their neurophysiological origin poorly understood. This study pioneers a neurophysiological perspective in examining PHM-related muscle activity patterns by characterizing and comparing them with those in the arm, forearm, and hand muscles of control participants executing intact hand movements (IHM) of similar types.
View Article and Find Full Text PDFLaparoscopic surgery brings substantial benefits to patients. However, it remains challenging for surgeons because of motion constraints and perception limitations. Notably, the perception of interactions with organs is largely compromised.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
April 2023
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these robots has grown exponentially, and sensors and actuation technologies are two fundamental research themes for their development. In this review, an in-depth study of the works related to exoskeletons and specifically to these two main aspects is carried out.
View Article and Find Full Text PDFUpright posture control and gait are essential for achieving autonomous daily living activities. Postural control of upright posture relies, among others, on the integration of various sensory information. In this context, light touch (LT) and light grip (LG) of a stationary object provide an additional haptic sensory input that helps to reduce postural sway.
View Article and Find Full Text PDFLightly touching an earth-fixed external surface with the forefinger provides somatosensory information that reduces the center of pressure (CoP) oscillations. If this surface were to move slowly, the central nervous system (CNS) would misinterpret its movement as body self-motion, and involuntary compensatory sway responses would appear, resulting in a significant coupling between finger and CoP motions. We designed a forefinger moving light-touch biofeedback based on this finding, which controls the surface velocity to drive the CoP towards a target position.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
February 2019
When a lightly touched surface is moved according to a closed-loop control law, it has been shown in young adults that the centre of pressure (CoP) can be displaced in a controllable way without the conscious cooperation of participants. In this closed-loop paradigm, the surface velocity was continuously adjusted according to the CoP position. Since the closed-loop control of the CoP does not require the participant's voluntary cooperation, it could be of interest for the development of innovative biofeedback devices in balance rehabilitation.
View Article and Find Full Text PDFIEEE Trans Haptics
December 2015
Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels.
View Article and Find Full Text PDF