The best multivalent effects observed in glycosidase inhibition have been achieved so far with jack bean α-mannosidase (JBα-man) using iminosugar clusters based on weakly binding mismatching active-site-directed inhibiting epitopes (inhitopes) in the d-gluco series. Here, we synthesize and evaluate as JBα-man inhibitors a series of mono- to 14-valent glycoimidazoles with inhitopes displaying inhibition values up to the range of hundreds of nMs to study the impact of inhitope affinity on the multivalent effect. The most potent inhibitor of the series, a 14-valent mannoimidazole derivative, inhibits JBα-man with a nanomolar Ki value (2 ± 0.
View Article and Find Full Text PDFA series of simple -alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward piperidine could invert their targeting from glucosylceramide (GlcCer) formation toward GlcCer hydrolysis. Thus, we found that the 5-membered ring derivatives did not inhibit the hydrolysis reaction of GlcCer catalysed by lysosomal β-glucocerebrosidase (GBA).
View Article and Find Full Text PDFCorrection for 'Stereodivergent synthesis of right- and left-handed iminoxylitol heterodimers and monomers. Study of their impact on β-glucocerebrosidase activity' by Fabien Stauffert et al., Org.
View Article and Find Full Text PDFA library of dimers and heterodimers of both enantiomers of 2-O-alkylated iminoxylitol derivatives has been synthesised and evaluated on β-glucocerebrosidase (GCase), the enzyme responsible for Gaucher disease (GD). Although the objective was to target simultaneously the active site and a secondary binding site of the glucosidase, the (-)-2-iminoxylitol moiety seemed detrimental for imiglucerase inhibition and no significant enhancement was obtained in G202R, N370S and L444P fibroblasts. However, all compounds having at least one (+)-2-O-alkyl iminoxylitol are GCase inhibitors in the nano molar range and are significant GCase activity enhancers in G202R fibroblats, as confirmed by a decrease of glucosylceramide levels and by co-localization studies.
View Article and Find Full Text PDFThe enigmatical dichotomy between the two CERT/GPBP protein isoforms, their vast panel of biological implications and the scarcity of known antagonist series call for new ligand chemotypes identification. We report the design of iminosugar-based ceramide mimics for the development of new START domain ligands potentially targeting either protein isoforms. Strategic choice of (i) an iminoxylitol core structure and (ii) the positioning of two dodecyl residues led to an extent of protein binding comparable to that of the natural cargo lipid ceramide or the archetypical inhibitor HPA-12.
View Article and Find Full Text PDFThe synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I)-catalysed azide-alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.
View Article and Find Full Text PDFTo further extend the scope of iminosugar biological activity, a systematic structure-activity relationship investigation has been performed by synthesizing and evaluating as cholinesterase inhibitors a library of twenty-three iminoalditols with different substitutions and stereochemistry patterns. These compounds have been evaluated in vitro for the inhibition of cholinesterases (different sources of acetylcholinesterase and butyrylcholinesterase). Some compounds have IC50 values in the micromolar range and display significant inhibition selectivity for butyrylcholinesterase over acetylcholinesterase.
View Article and Find Full Text PDF