Non-extractive techniques such as video analysis are increasingly used by scientists to study marine communities instead of extractive methods such as trawling. Currently, environmental DNA (eDNA) analysis is seen as a revolutionary tool to study taxonomic diversity. We aimed to determine which method is the most appropriate to describe fish and commercial invertebrate diversity comparing bottom trawl hauls, video transects and seawater eDNA.
View Article and Find Full Text PDFMarine stock assessments or biodiversity monitoring studies, which historically relied on extractive techniques (e.g., trawl or grab surveys), are being progressively replaced by non-extractive approaches.
View Article and Find Full Text PDFKnowledge about fish behavior is crucial to be able to influence the capture process and catch species composition. The rapid expansion of the use of underwater cameras has facilitated unprecedented opportunities for studying the behavior of species interacting with fishing gears in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for right-censored observations and variable observation periods between individuals related to instrumental, environmental and behavioral events.
View Article and Find Full Text PDFBesides understanding the effects of fishing on harvested fish stocks, effects on non-target species, habitats and seafloor integrity also need to be considered. Static fishing gears have often been mentioned as a lower impact fishing alternative to towed gears, although studies examining their actual impact on the seafloor are scarce. In this study, we aimed to describe fish trap movements on the seafloor related to soaking time and trap retrieval.
View Article and Find Full Text PDFMost European fishing fleets will need to drastically reduce their unwanted catches to comply with new rules of the common fisheries policy. A more practical way to avoid increasing on-board sorting time and issues linked to storage capacity is to prevent unwanted catches in the first place. We assessed the selectivity properties of an experimental fishing gear that combined a 100 mm T90 cylinder with 130 meshes in the extension and a 100 mm T90 codend of 33 meshes (experimental gear) compared to a 100 mm diamond mesh extension and codend (control gear) during commercial trips using twin trawls.
View Article and Find Full Text PDFImproving the selectivity of a fishing gear is one technical management measure to significantly reduce by-catch of non-commercial species or undersized individuals. The efficiency of selective device is mainly estimated by comparing species composition, the biomass and length spectrum of caught individuals and escapees while the functional traits of species are rarely accounted for. Using an innovative technical device to reduce catches of undersized individuals in a multispecific bottom trawl fishery in the Bay of Biscay, namely a T90 mesh cylinder, we measured functional traits on both caught and escaped individuals of 18 species.
View Article and Find Full Text PDF