Publications by authors named "Fabien Mongelard"

Nucleolin is an essential protein that plays important roles in the regulation of cell cycle and cell proliferation. Its expression is up regulated in many cancer cells but its molecular functions are not well characterized. Nucleolin is present in the nucleus where it regulates gene expression at the transcriptional and post-transcriptional levels.

View Article and Find Full Text PDF

Genetic loss-of-function studies on development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive tumor, mostly resistant to the standard treatments. Nucleolin is overexpressed in cancers and its inhibition impairs tumor growth. Herein, we showed that nucleolin was overexpressed in human specimens of pancreatic ductal adenocarcinoma (PDAC) and that the overall survival significantly increased in patients with low levels of nucleolin.

View Article and Find Full Text PDF

Although the elaborate combination of histone and non-histone protein complexes defines chromatin organization and hence regulates numerous nuclear processes, the role of chromatin organizing proteins remains unexplored at the organismal level. The highly abundant, multifunctional, chromatin-associated protein and transcriptional coactivator positive coactivator 4 (PC4/Sub1) is absolutely critical for life, because its absence leads to embryonic lethality. Here, we report results obtained with conditional PC4 knock-out (PC4(f/f) Nestin-Cre) mice where PC4 is knocked out specifically in the brain.

View Article and Find Full Text PDF

Nucleolin is present in diverse cellular compartments and is involved in a variety of cellular processes from nucleolar structure and function to intracellular trafficking, cell adhesion and migration. Recently, nucleolin has been localized at the mature centriole where it is involved in microtubule nucleation and anchoring. Although this new function of nucleolin linked to microtubule regulation has been identified, the global effects of nucleolin on microtubule dynamics have not been addressed yet.

View Article and Find Full Text PDF

Nucleolin is a pleiotropic protein involved in a variety of cellular processes. Although multipolar spindle formation has been observed after nucleolin depletion, the roles of nucleolin in centrosome regulation and functions have not been addressed. Here we report using immunofluorescence and biochemically purified centrosomes that nucleolin co-localized only with one of the centrioles during interphase which was further identified as the mature centriole.

View Article and Find Full Text PDF

The regulation of ribosomal DNA transcription is an important step for the control of cell growth. Epigenetic marks such as DNA methylation and posttranslational modifications of canonical histones have been involved in this regulation, but much less is known about the role of histone variants. In this work, we show that the histone variant macroH2A1 is present on the promoter of methylated rDNA genes.

View Article and Find Full Text PDF

Nucleolin is a multifunctional protein that carries several post-translational modifications. We characterized nucleolin acetylation and developed antibodies specific to nucleolin K88 acetylation. Using this antibody we show that nucleolin is acetylated in vivo and is not localized in the nucleoli, but instead is distributed throughout the nucleoplasm.

View Article and Find Full Text PDF

The elementary level of chromatin fiber, namely the nucleofilament, is known to undergo a hierarchical compaction leading to local chromatin loops, then chromatin domains and ultimately chromosome territories. These successive folding levels rely on the formation of chromatin loops ranging from few kb to some Mb. In addition to a packaging and structural role, the high-order organization of genomes functionally impacts on gene expression program.

View Article and Find Full Text PDF

Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types.

View Article and Find Full Text PDF

Nucleolin is a multi-functional nucleolar protein that is required for ribosomal RNA gene (rRNA) transcription in vivo, but the mechanism by which nucleolin modulates RNA polymerase I (RNAPI) transcription is not well understood. Nucleolin depletion results in an increase in the heterochromatin mark H3K9me2 and a decrease in H4K12Ac and H3K4me3 euchromatin histone marks in rRNA genes. ChIP-seq experiments identified an enrichment of nucleolin in the ribosomal DNA (rDNA) coding and promoter region.

View Article and Find Full Text PDF

In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew.

View Article and Find Full Text PDF

Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression.

View Article and Find Full Text PDF

Sequence dependency of DNA intrinsic bending properties has been emphasized as a possible key ingredient to in vivo chromatin organization. We use atomic force microscopy (AFM) in air and liquid to image intrinsically straight (synthetic), uncorrelated (hepatitis C RNA virus) and persistent long-range correlated (human) DNA fragments in various ionic conditions such that the molecules freely equilibrate on the mica surface before being captured in a particular conformation. 2D thermodynamic equilibrium is experimentally verified by a detailed statistical analysis of the Gaussian nature of the DNA bend angle fluctuations.

View Article and Find Full Text PDF

In development by Antisoma plc, AS-1411 is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the potential treatment of cancers, including acute myelogenous leukemia (AML). As an aptamer, AS-1411 does not appear to engage in hybridization-requiring pathways such as antisense effect, siRNA or triple helix formation. Instead, AS-1411 appears to bind to nucleolin specifically, and is subsequently internalized into the tumor cell.

View Article and Find Full Text PDF

Background: Nucleolin is a major component of the nucleolus, but is also found in other cell compartments. This protein is involved in various aspects of ribosome biogenesis from transcription regulation to the assembly of pre-ribosomal particles; however, many reports suggest that it could also play an important role in non nucleolar functions. To explore nucleolin function in cell proliferation and cell cycle regulation we used siRNA to down regulate the expression of nucleolin.

View Article and Find Full Text PDF

Nucleolin is an abundant, ubiquitously expressed protein that is found in various cell compartments, especially in the nucleolus, of which it is a major component. This multifunctional protein has been described as being a part of many pathways, from interactions with viruses at the cellular membrane to essential processing of the ribosomal RNA in the nucleolus. However, most of the molecular details of these different functions are not understood.

View Article and Find Full Text PDF

Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling.

View Article and Find Full Text PDF

Adaptation to cold and warm conditions requires dramatic change in gene expression. The acclimatization process of the common carp Cyprinus carpio L. in its natural habitat has been used to study how organisms respond to natural environmental changes.

View Article and Find Full Text PDF

Two mutant alleles of the same gene, each located in one of the two homologous chromosomes, may in some instances restore the wild-type function of the gene. This is the case with certain combinations of mutant alleles in the mod(mdg4) gene. This gene encodes several different proteins, including Mod(mdg4)2.

View Article and Find Full Text PDF