We propose a new holographic interferometric technique of phase interrogation for nanophotonic sensors, allowing to reach low phase noise and fluctuation by using a digital micromirror device spatial light modulator. With the spatial light modulator, both beam shaping and phase shifting interferometry can be simultaneously managed, hence enabling the interrogation of nanophotonic devices with a common-path heterodyne Young's interference experiment. The efficiency of the technique is illustrated in the particular case of temperature sensing using Tamm plasmon photonic crystals.
View Article and Find Full Text PDFA perturbative analysis is proposed to estimate optical losses for electrically pumped micro-disk lasers. The optical field interaction with the electrical contacts and the optimization of their implementation is investigated. Our model shows a good agreement with 3D Finite Difference Time Domain (FDTD) computation and can be used for designing contacts for thin micro-disks, with a considerably reduced calculation time.
View Article and Find Full Text PDF