An autologous split-thickness skin graft (STSG) is a standard treatment for coverage of full-thickness skin defects. However, this technique has two major drawbacks: the use of general anesthesia for skin harvesting and scar sequelae on the donor site. In order to reduce morbidity associated with STSG harvesting, researchers have developed autologous dermo-epidermal substitutes (DESs) using cell culture, tissue engineering, and, more recently, bioprinting approaches.
View Article and Find Full Text PDFGenerating comprehensive image maps, while preserving spatial three-dimensional (3D) context, is essential in order to locate and assess quantitatively specific cellular features and cell-cell interactions during organ development. Despite recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on two-dimensional histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in three dimensions and map tissue interactions at key time points in the mouse embryo.
View Article and Find Full Text PDFFibroblasts and myofibroblasts play a central role in skin homeostasis through dermal organization and maintenance. Nonetheless, the dynamic interactions between (myo)fibroblasts and the extracellular matrix (ECM) remain poorly exploited in skin repair strategies. Indeed, there is still an unmet need for soft tissue models allowing to study the spatial-temporal remodeling properties of (myo)fibroblasts.
View Article and Find Full Text PDFWe developed a new evolution of three-dimensional skin equivalent due to the optimization of four-dimensional laser-assisted bioprinting and skin equivalent culture protocols. This allowed us to produce fully bioprinted skin equivalents that are closed to current skin equivalents and suitable to test cosmetic ingredients. Particularly, we performed preliminary evaluation of maturogens to improve the dermis maturation before the epidermal seeding and we designed a specific "micropattern" to reproduce the nonlinear aspect of the dermal-epidermal junction.
View Article and Find Full Text PDFBioprinting has emerged as a novel technological approach with the potential to address unsolved questions in the field of tissue engineering. We have recently shown that Laser Assisted Bioprinting (LAB), due to its unprecedented cell printing resolution and precision, is an attractive tool for the in situ printing of a bone substitute. Here, we show that LAB can be used for the in situ printing of mesenchymal stromal cells, associated with collagen and nano-hydroxyapatite, in order to favor bone regeneration, in a calvaria defect model in mice.
View Article and Find Full Text PDFLaser-assisted bioprinting is a versatile, non-contact, nozzle-free printing technique which has demonstrated high potential for cell printing with high resolution. Improving cell viability requires determining printing conditions which minimize shear stress for cells within the jet and cell impact at droplet landing. In this context, this study deals with laser-induced jet dynamics to determine conditions from which jets arise with minimum kinetic energies.
View Article and Find Full Text PDFMethods Cell Biol
September 2014
The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution.
View Article and Find Full Text PDFEsophageal tissue engineering is still in an early state, and ideal methods have not been developed. Since the beginning of the 20th century, advances have been made in the materials that can be used to produce an esophageal substitute. Three approaches to scaffold-based tissue engineering have yielded good results.
View Article and Find Full Text PDFBackground Information: Podosomes are actin-based structures involved in cell adhesion, migration, invasion and extracellular matrix degradation. They have been described in large vessel endothelial cells, but nothing is known concerning microvascular endothelial cells. Here, we focussed on liver sinusoidal endothelial cells (LSECs), fenestrated microvascular cells that play major roles in liver physiology.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2012
Layer-by-layer biofabrication represents a novel strategy to create three-dimensional living structures with a controlled internal architecture, using cell micromanipulation technologies. Laser assisted bioprinting (LAB) is an effective printing method for patterning cells, biomolecules, and biomaterials in two dimensions. "Biopapers," made of thin polymer scaffolds, may be appropriate to achieve three-dimensional constructs and to reinforce mechanical properties of printed materials.
View Article and Find Full Text PDFDeveloping tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue engineering products. The objective of this work was to determine laser printing parameters for patterning and assembling nano-hydroxyapatite (nHA) and human osteoprogenitors (HOPs) in two and three dimensions with LAB.
View Article and Find Full Text PDFBottom-up tissue engineering technologies address two of the main limitations of top-down tissue engineering approaches: the control of mass transfer and the fabrication of a controlled and functional histoarchitecture. These emerging technologies encompass mesoscale (e.g.
View Article and Find Full Text PDFWe present the first attempt to apply bioprinting technologies in the perspective of computer-assisted medical interventions. A workstation dedicated to high-throughput biological laser printing has been designed. Nano-hydroxyapatite (n-HA) was printed in the mouse calvaria defect model in vivo.
View Article and Find Full Text PDFThe International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09) demonstrated that the field of bioprinting and biofabrication continues to evolve. The increasing number and broadening geography of participants, the emergence of new exciting bioprinting technologies, and the attraction of young investigators indicates the strong growth potential of this emerging field. Bioprinting can be defined as the use of computer-aided transfer processes for patterning and assembling living and non-living materials with a prescribed 2D or 3D organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic and basic cell biology studies.
View Article and Find Full Text PDFOver this decade, cell printing strategy has emerged as one of the promising approaches to organize cells in two and three dimensional engineered tissues. High resolution and high speed organization of cells are some of the key requirements for the successful fabrication of cell-containing two or three dimensional constructs. So far, none of the available cell printing technologies has shown an ability to concomitantly print cells at a cell-level resolution and at a kHz range speed.
View Article and Find Full Text PDFWe describe the physical parameters involved in laser-assisted cell printing and present evidence that this technology is coming of age. Finally we discuss how this high-throughput, high-resolution technique may help in reproducing local cell microenvironments, and thereby create functional tissue-engineered 3D constructs.
View Article and Find Full Text PDFProper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross-talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co-culture between osteoblastic and endothelial cells.
View Article and Find Full Text PDFA magnetic tweezers setup is used to control both the stretching force and the relative linking number DeltaLk of a palindromic DNA molecule. We show here, in absence of divalent ions, that twisting negatively the molecule while stretching it at approximately 1 pN induces the formation of a cruciform DNA structure. Furthermore, once the cruciform DNA structure is formed, the extrusion of several kilo-base pairs of palindromic DNA sequence is directly and reversibly controlled by varying DeltaLk.
View Article and Find Full Text PDFExpert Rev Med Devices
November 2005
To increase an orthopedic implant's lifetime, research trends have included the development of new titanium alloys made of nontoxic elements with suitable mechanical properties (low Young's modulus - high fatigue strength), good workability and corrosion resistance. In accordance with the background on titanium and metallic biomaterials, recent interesting developments in titanium-based biomaterials are reported in this review, with a special emphasis on the design of new metastable beta-titanium alloys for orthopedic applications. In addition, as the concept of titanium alloys can now be regarded as relatively old, having emerged at the beginning of the 1980s, the author suggests some future directions that would permit the emergence of a new generation of titanium implants.
View Article and Find Full Text PDFPurpose: To validate the deployment, in vivo performance, biostability, and healing capacity of the Anaconda self-expanding endoprosthesis in a canine aortic aneurysm model.
Methods: Aneurysms were surgically created in 12 dogs by sewing a woven polyester patch onto the anterior side of the thoracic or abdominal aorta. Anaconda prostheses were implanted transfemorally for prescheduled periods (1 or 3 months).