Background: In early stage clinical trials, changes to levels of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME) are critical biomarkers of the mechanism of action of novel immunotherapies. However, baseline heterogeneity of tumor samples, both between and within patients, and the resultant impact on the validity of clinical trial data is not well defined. Here we identify and quantify the impact of baseline variables on the heterogeneity of FoxP3+ and proliferating CD8+ T-cells levels (MKi67+CD8A+) in the TME both between and within patients for the purpose of informing clinical trial design and analysis.
View Article and Find Full Text PDFThe development and progression of solid tumors such as colorectal cancer (CRC) are known to be affected by the immune system and cell types such as T cells, natural killer (NK) cells, and natural killer T (NKT) cells are emerging as interesting targets for immunotherapy and clinical biomarker research. In addition, CD3 and CD8 T cell distribution in tumors has shown positive prognostic value in stage I-III CRC. Recent developments in digital computational pathology support not only classical cell density based tumor characterization, but also a more comprehensive analysis of the spatial cell organization in the tumor immune microenvironment (TiME).
View Article and Find Full Text PDFFeatures characterizing the immune contexture (IC) in the tumor microenvironment can be prognostic and predictive biomarkers. Identifying novel biomarkers can be challenging due to complex interactions between immune and tumor cells and the abundance of possible features. We describe an approach for the data-driven identification of IC biomarkers.
View Article and Find Full Text PDFAssessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma.
View Article and Find Full Text PDFAssessment of tumor-infiltrating lymphocytes (TILs) in histopathologic specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible, and reliable immunooncology biomarkers is clear.
View Article and Find Full Text PDFAnti-tumour immune activation by checkpoint inhibitors leads to durable responses in a variety of cancers, but combination approaches are required to extend this benefit beyond a subset of patients. In preclinical models tumour-derived VEGF limits immune cell activity while anti-VEGF augments intra-tumoral T-cell infiltration, potentially through vascular normalization and endothelial cell activation. This study investigates how VEGF blockade with bevacizumab could potentiate PD-L1 checkpoint inhibition with atezolizumab in mRCC.
View Article and Find Full Text PDFIntroduction: Epidermal growth factor receptor (EGFR) protein expression in non-small cell lung cancer (NSCLC) is not recommended for predicting response to EGFR tyrosine kinase inhibitors (TKI) due to conflicting results, all using antibodies detecting EGFR external domain (ED). We tested the predictive value of EGFR protein expression for response to an EGFR TKI with an antibody that detects the intracellular domain (ID) and compared fluorescence-based Automated QUantitative Analysis (AQUA) technology to immunohistochemistry (IHC).
Methods: Specimens from 98 gefitinib-treated NSCLC Japanese patients were evaluated by IHC (n = 98 of 98) and AQUA technology (n = 70 of 98).
Purpose: Identification of new therapies in small cell lung cancer (SCLC) is urgently needed. Insulin-like growth factor 1 receptor (IGF1R) is a tyrosine kinase receptor implicated in the pathogenesis of several malignancies and is potentially an attractive target for anticancer treatment. Knowledge about IGF1R protein expression, gene copy number, and the prognostic relevance of these features in SCLC is limited.
View Article and Find Full Text PDFThe importance of HER2 status in breast cancer management has focused attention on the ability of clinical assays to correctly assign HER2 amplification status. There is no consensus as to the best method for assessing HER2 status. Disadvantages of fluorescence in situ hybridization (FISH) testing include longer time required for staining and scoring slides, requirements for specialized training and fluorescence microscopy, and loss of the signal due to quenching of the fluorescent dye.
View Article and Find Full Text PDFBackground: Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review.
View Article and Find Full Text PDF