Publications by authors named "Fabien Deligey"

High-resolution investigation of cell wall materials has emerged as an important application of biomolecular solid-state NMR (ssNMR). Multidimensional correlation experiments have become a standard method for obtaining sufficient spectral resolution to determine the polymorphic structure of carbohydrates and address biochemical questions regarding the supramolecular organization of cell walls. Using plant cellulose and matrix polysaccharides as examples, we will review how the multifaceted complexity of polysaccharide structure is impeding the resonance assignment process and assess the available biochemical and spectroscopic approaches that could circumvent this barrier.

View Article and Find Full Text PDF

Cellulose, the most abundant biopolymer, is a central source for renewable energy and functionalized materials. synthesis of cellulose microfibrils (CMFs) has become possible using purified cellulose synthase (CESA) isoforms from and hybrid aspen. The exact nature of these fibrils remains unknown.

View Article and Find Full Text PDF

Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches.

View Article and Find Full Text PDF

Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs.

View Article and Find Full Text PDF

Background: Epidermal cell walls have special structural and biological roles in the life of the plant. Typically they are multi-ply structures encrusted with waxes and cutin which protect the plant from dehydration and pathogen attack. These characteristics may also reduce chemical and enzymatic deconstruction of the wall for sugar analysis and conversion to biofuels.

View Article and Find Full Text PDF

Background: Multidimensional solid-state nuclear magnetic resonance (ssNMR) spectroscopy has emerged as an indispensable technique for resolving polymer structure and intermolecular packing in primary and secondary plant cell walls. Isotope (C) enrichment provides feasible sensitivity for measuring 2D/3D correlation spectra, but this time-consuming procedure and its associated expenses have restricted the application of ssNMR in lignocellulose analysis.

Results: Here, we present a method that relies on the sensitivity-enhancing technique Dynamic Nuclear Polarization (DNP) to eliminate the need for C-labeling.

View Article and Find Full Text PDF

Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin.

View Article and Find Full Text PDF

The cell walls of plants and microbes are a central source for bio-renewable energy and the major targets of antibiotics and antifungal agents. It is highly challenging to determine the molecular structure of complex carbohydrates, protein and lignin, and their supramolecular assembly in intact cell walls. This article selectively highlights the recent breakthroughs that employ C/N solid-state NMR techniques to elucidate the architecture of fungal cell walls in Aspergillus fumigatus and the primary and secondary cell walls in a large variety of plant species such as Arabidopsis, Brachypodium, maize, and spruce.

View Article and Find Full Text PDF