Publications by authors named "Fabien Brieuc"

The vibrational spectroscopy of protonated methane and its mixed hydrogen/deuterium isotopologues remains a challenge to both experimental and computational spectroscopy due to the iconic floppiness of CH. Here, we compute the finite-temperature broadband infrared spectra of CH and all its isotopologues, CHD up to CD, from path integral molecular dynamics in conjunction with interactions and dipoles computed consistently at CCSD(T) coupled cluster accuracy. The potential energy and dipole moment surfaces have been accurately represented in full dimensionality in terms of high-dimensional neural networks.

View Article and Find Full Text PDF

Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex . The equilibrium structure of is planar and T-shaped, one He atom solvating the quasi-linear He-H -He core.

View Article and Find Full Text PDF

Little is known about how rotating molecular ions interact with multiple ^{4}He atoms and how this relates to microscopic superfluidity. Here, we use infrared spectroscopy to investigate ^{4}He_{N}⋯H_{3}O^{+} complexes and find that H_{3}O^{+} undergoes dramatic changes in rotational behavior as ^{4}He atoms are added. We present evidence of clear rotational decoupling of the ion core from the surrounding helium for N>3, with sudden changes in rotational constants at N=6 and 12.

View Article and Find Full Text PDF

The infrared (IR) spectra of protonated water clusters encode precise information on the dynamics and structure of the hydrated proton. However, the strong anharmonic coupling and quantum effects of these elusive species remain puzzling up to the present day. Here, we report unequivocal evidence that the interplay between the proton transfer and the water wagging motions in the protonated water dimer (Zundel ion) giving rise to the characteristic doublet peak is both more complex and more sensitive to subtle energetic changes than previously thought.

View Article and Find Full Text PDF

Infrared spectroscopy is key to elucidating molecular structures, monitoring reactions, and observing conformational changes, while providing information on both structural and dynamical properties. This makes the accurate prediction of infrared spectra based on first-principle theories a highly desirable pursuit. Molecular dynamics simulations have proven to be a particularly powerful approach for this task, albeit requiring the computation of energies, forces and dipole moments for a large number of molecular configurations as a function of time.

View Article and Find Full Text PDF

The study of molecular impurities in para-hydrogen (pH) clusters is key to push forward our understanding of intra- and intermolecular interactions, including their impact on the superfluid response of this bosonic quantum solvent. This includes tagging with only one or very few pH, the microsolvation regime for intermediate particle numbers, and matrix isolation with many solvent molecules. However, the fundamental coupling between the bosonic pH environment and the (ro-)vibrational motion of molecular impurities remains poorly understood.

View Article and Find Full Text PDF

A previously published neural network potential for the description of protonated water clusters up to the protonated water tetramer, H(HO), at an essentially converged coupled cluster accuracy [C. Schran, J. Behler, and D.

View Article and Find Full Text PDF

We employ the th nearest-neighbor estimator of configurational entropy in order to decode within a parameter-free numerical approach the complex high-order structural correlations in fluxional molecules going much beyond the usual linear, bivariate correlations. This generic entropy-based scheme for determining many-body correlations is applied to the complex configurational ensemble of protonated acetylene, a prototype for fluxional molecules featuring large-amplitude motion. After revealing the importance of high-order correlations beyond the simple two-coordinate picture for this molecule, we analyze in detail the evolution of the relevant correlations with temperature as well as the impact of nuclear quantum effects down to the ultralow temperature regime of 1 K.

View Article and Find Full Text PDF

Superfluid helium has not only fascinated scientists for centuries but is also the ideal matrix for the investigation of chemical systems under ultra-cold conditions in helium nanodroplet isolation experiments. Together with related experimental techniques such as helium tagging photodissociation spectroscopy, these methods have provided unique insights into many interesting systems. Complemented by theoretical work, they were additionally able to greatly expand our general understanding of manifestations of superfluid behavior in finite sized clusters and their response to molecular impurities.

View Article and Find Full Text PDF

The isotope effect on the collective proton/deuteron transfer in hydrogen and deuterium fluoride crystals has been investigated at 100 K by ab initio quantum-thermal-bath path-integral molecular dynamics (QTB-PIMD) simulation. The deuterons within a planar zigzag chain of the orthorhombic structure simultaneously flip between covalent and hydrogen bonds due to the barrier crossing through tunnelling. The height of the corresponding static barrier normalized for one deuteron is 29.

View Article and Find Full Text PDF

For a long time, performing converged path integral simulations at ultralow but finite temperatures of a few Kelvin has been a nearly impossible task. However, recent developments in advanced colored noise thermostatting schemes for path integral simulations, namely, the Path Integral Generalized Langevin Equation Thermostat (PIGLET) and the Path Integral Quantum Thermal Bath (PIQTB), have been able to greatly reduce the computational cost of these simulations, thus making the ultralow temperature regime accessible in practice. In this work, we investigate the influence of these two thermostatting schemes on the description of hydrogen-bonded systems at temperatures down to a few Kelvin as encountered, for example, in helium nanodroplet isolation or tagging photodissociation spectroscopy experiments.

View Article and Find Full Text PDF

The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems.

View Article and Find Full Text PDF

The quantum thermal bath (QTB) method has been recently developed to account for the quantum nature of the nuclei by using standard molecular dynamics (MD) simulation. QTB-MD is an efficient but approximate method when dealing with strongly anharmonic systems, while path integral molecular dynamics (PIMD) gives exact results but in a huge amount of computation time. The QTB and PIMD methods have been combined in order to improve the PIMD convergence or correct the failures of the QTB-MD technique.

View Article and Find Full Text PDF