Publications by authors named "Fabiano Sillo"

Priming modulates plant stress responses before the stress appears, increasing the ability of the primed plant to endure adverse conditions and thrive. In this context, we investigated the effect of biological (i.e.

View Article and Find Full Text PDF

In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine.

View Article and Find Full Text PDF

Unlabelled: Currently, salinization is impacting more than 50% of arable land, posing a significant challenge to agriculture globally. Salt causes osmotic and ionic stress, determining cell dehydration, ion homeostasis, and metabolic process alteration, thus negatively influencing plant development. A promising sustainable approach to improve plant tolerance to salinity is the use of plant growth-promoting bacteria (PGPB).

View Article and Find Full Text PDF

Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens.

View Article and Find Full Text PDF

In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize ( L.) and bean ( L., L.

View Article and Find Full Text PDF
Article Synopsis
  • Soil functionality is vital for ecosystem services, and urbanization significantly alters the microbial composition of soil, impacting sustainable city development.
  • This study focuses on urban flowerbeds in Prato, Italy, using DNA metabarcoding and GC-MS analysis to assess microbial biodiversity and VOC emission profiles.
  • Findings indicate that VOCs are linked to both human activities and biological processes, with notable correlations found between specific microbial communities and VOC patterns, suggesting that microbe-VOC relationships can help evaluate soil quality in urban environments.
View Article and Find Full Text PDF

Root transcriptomics and biochemical analyses in water-stressed Pisum sativum plants inoculated with Pseudomonas spp. suggested preservation of ABA-related pathway and ROS detoxification, resulting in an improved tolerance to stress. Drought already affects agriculture in large areas of the globe and, due to climate change, these areas are predicted to become increasingly unsuitable for agriculture.

View Article and Find Full Text PDF

Introduction: Food crops are increasingly susceptible to the challenging impacts of climate change, encompassing both abiotic and biotic stresses, that cause yield losses. Root-associated microorganisms, including plant growth-promoting bacteria (PGPB), can improve plant growth as well as plant tolerance to environmental stresses. The aims of this work were to characterize bacteria isolated from soil and roots of tomato plants grown in open field.

View Article and Find Full Text PDF

Legumes improve soil fertility by interacting symbiotically with nitrogen-fixing rhizobia allocated in root nodules. Some bacterial endophytes can coexist with rhizobia in nodules and might help legumes by enhancing stress tolerance, producing hormones stimulating plant growth, and increasing plant nutrient intake. Twenty-six bacterial endophytes from root nodules cultivated in intercropping with were identified and characterized molecularly and biochemically.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized dendrochronology, tree-ring carbon isotopes, and genetic analysis to reveal that trees in the non-declining (ND) stand are more resilient to drought and exhibit different growth patterns compared to those in the declining (D) stand.
  • * Findings indicate that the ND trees take a more conservative approach to water use, possibly due to genetic differences, and highlight the usefulness of combining tree-ring data and genetic analysis for better forest management strategies.
View Article and Find Full Text PDF

Orchid mycorrhiza (OM) represents an unusual symbiosis between plants and fungi because in all orchid species carbon is provided to the host plant by the mycorrhizal fungus at least during the early stages of orchid development, named a protocorm. In addition to carbon, orchid mycorrhizal fungi provide the host plant with essential nutrients such as phosphorus and nitrogen. In mycorrhizal protocorms, nutrients transfer occurs in plant cells colonized by the intracellular fungal coils, or pelotons.

View Article and Find Full Text PDF

Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later.

View Article and Find Full Text PDF

Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood.

View Article and Find Full Text PDF

L. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops.

View Article and Find Full Text PDF

Plant growth promoting (PGP) bacteria are known to enhance plant growth and protect them from environmental stresses through different pathways. The rhizosphere of perennial plants, including olive, may represent a relevant reservoir of PGP bacteria. Here, seven bacterial strains isolated from olive rhizosphere have been characterized taxonomically by 16S sequencing and biochemically, to evaluate their PGP potential.

View Article and Find Full Text PDF

Population genetics allow to address fundamental questions about the biology of plant pathogens. By testing specific hypotheses, population genetics provide insights into the population genetic variability of pathogens across different geographical areas, time, and associated plant hosts, as well as on the structure and differentiation of populations, and on the possibility that a population is introduced and from where it has originated. In this chapter, basic concepts of population genetics are introduced, as well as the five evolutionary factors affecting populations, that is, mutations, recombination, variation in population size, gene flow, and natural selection.

View Article and Find Full Text PDF

In the past 20 years, laser microdissection (LMD) technology has been widely applied to plant tissues, allowing to obtain new information on the role of different cell-type populations during plant development and interactions, including plant-pathogen interactions. The application of a LMD approach allowed verifying the response of plant and pathogen during the progression of the infection in different cell types, focusing both on gene expression in host plants and pathogens. Here, a protocol to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations is described in detail, from the biological material preparation to RNA extraction and gene expression analyses.

View Article and Find Full Text PDF

Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of species promoting spore dissemination.

View Article and Find Full Text PDF

Unlabelled: ("Maitake") is an edible fungus with several nutraceutical properties, largely used in traditional medicine. The increased use of Maitake as a food supplements ingredient raised the need of accurate authentication methods since the morphological identification of is not feasible in formulated food supplements. We developed a diagnostic tool based on loop-mediated isothermal AMPlification (LAMP) for the detection of in food supplements.

View Article and Find Full Text PDF

Nowadays, the worldwide agriculture is experiencing a transition process toward more sustainable production, which requires the reduction of chemical inputs and the preservation of microbiomes' richness and biodiversity. Plants are no longer considered as standalone entities, and the future of agriculture should be grounded on the study of plant-associated microorganisms and all their potentiality. Moreover, due to the climate change scenario and the resulting rising incidence of abiotic stresses, an innovative and environmentally friendly technique in agroecosystem management is required to support plants in facing hostile environments.

View Article and Find Full Text PDF

Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability.

View Article and Find Full Text PDF

The study of orchid mycorrhizal interactions is particularly complex because of the peculiar life cycle of these plants and their diverse trophic strategies. Here, transcriptomics has been applied to investigate gene expression in the mycorrhizal roots of , a terrestrial mixotrophic orchid that associates with ectomycorrhizal fungi in the genus . Our results provide new insights into the mechanisms underlying plant-fungus interactions in adult orchids in nature and in particular into the plant responses to the mycorrhizal symbiont(s) in the roots of mixotrophic orchids.

View Article and Find Full Text PDF

Arbutus unedo (the strawberry tree) is a Mediterranean shrub which forms arbutoid mycorrhizae with a variety of Asco- and Basidiomycetes. After the discovery of the mycorrhizal symbiosis between A. unedo and Tuber borchii, in this study, arbutoid mycorrhizae were synthetized in greenhouse with Tuber aestivum and Tuber melanosporum.

View Article and Find Full Text PDF