The identification of gastrointestinal (GI) motility disorders requires the evaluation of regional GI transit, and the development of alternative methodologies in animals has a significant impact on translational approaches. Therefore, the purpose of this study was to validate an easy and low-cost methodology (alternate current biosusceptometry - ACB) for the assessment of regional GI transit in rats through images. Rats were fed a test meal containing magnetic tracer and phenol red, and GI segments (stomach, proximal, medial and distal small intestine, and cecum) were collected to assess tracer's retention at distinct times after ingestion (0, 60, 120, 240, and 360 min).
View Article and Find Full Text PDFDrug Dev Ind Pharm
August 2014
Context: Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets.
Objective: The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery.
The association between anisotropic magnetoresistive (AMR) sensor and AC biosusceptometry (ACB) to evaluate gastrointestinal motility is presented. The AMR-ACB system was successfully characterized in a bench-top study, and in vivo results were compared with those obtained by means of simultaneous manometry. Both AMR-ACB and manometry techniques presented high temporal cross correlation between the two periodicals signals .
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
The alternate current biosusceptometry (ACB) is a biomagnetic technique used to study some physiological parameters associated with gastrointestinal (GI) tract. For this purpose it applies an AC magnetic field and measures the response originating from magnetic marks or tracers. This paper presents an equipment based on the ACB which uses anisotropic magnetoresistive (AMR) sensors and an inexpensive electronic support.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
May 2008
Anisotropic Magnetoresistive (AMR) sensors shows a new possibility to detect magnetic fields produced by magnetic particles present in the gastrointestinal (GI) tract. A system that uses excitation and detection of magnetic field was developed using AMR sensor. A magnetic flux concentrator was also studied to increase the sensitivity of AMR in this work.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
A novel instrumentation using anisotropic magnetoresistive (AMR) sensors associated with magnetic coils excitation was developed to evaluate gastrointestinal tract motility parameters. The susceptometer has four sensors that were used to measure the gastric activity contractions (GAC) in anaesthetized dogs, its performance was evaluated by manometry with good results.
View Article and Find Full Text PDFPurpose: To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process.
Materials And Methods: HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT).