Anal Methods
September 2022
The development of 3D-printed electrochemical sensors by fused deposition modeling (FDM) has been increasing exponentially in the last five years. In this context, commercial conductive filaments composed of a blend of carbon particles (, graphene or carbon black (CB)) and insulating thermoplastic polymers (, polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS)) have been widely used for electrode fabrication. However, such materials may be expensive and the electrodes when used "as-printed" exhibit poor electrochemical performance as a function of the low content of conductive particles in the composition (∼10 to 20 wt%), which requires one or more post-treatment steps ( polishing, chemical, electrochemical, and photochemical) to reach good electrochemical performance.
View Article and Find Full Text PDF3D printing is a hot topic in electroanalytical chemistry, allowing the construction of custom cells and sensors at affordable prices. In this work, we describe a novel small and practical 3D-printed electrochemical cell. The cell's body, manufactured in ABS on a 3D printer, is composed by three parts easily screwed: solution vessel, stick and cover with two embedded 3D-pen-printed carbon black-polylactic acid (CB-PLA) electrodes (counter and pseudo-reference).
View Article and Find Full Text PDF