Publications by authors named "Fabiana Zappala"

Extensive antibody engineering and cloning is typically required to generate new bispecific antibodies. Made-to-order genes, advanced expression systems, and high-efficiency cloning can simplify and accelerate this process, but it still can take months before a functional product is realized. We developed a simple method to site-specifically and covalently attach a T cell-redirecting domain to any off-the-shelf, human immunoglobulin G (IgG) or native IgG isolated from serum.

View Article and Find Full Text PDF

Bispecific antibodies (BsAb) refer to a class of biomacromolecules that are capable of binding two antigens or epitopes simultaneously. This can elicit unique biological effects that cannot be achieved with either individual antibody or two unlinked antibodies. Bispecific antibodies have been used for targeting effector cells to tumor cells, preferential targeting of cells expressing two target biomarkers over cells expressing either target biomarker individually, or to couple two molecular targets on the same cell surface to trigger unique intracellular signaling pathways.

View Article and Find Full Text PDF

Universal immune receptors represent a rapidly emerging form of adoptive T-cell therapy with the potential to overcome safety and antigen escape challenges faced by conventional chimeric antigen receptor (CAR) T-cell therapy. By decoupling antigen recognition and T-cell signaling domains via bifunctional antigen-specific targeting ligands, universal immune receptors can regulate T-cell effector function and target multiple antigens with a single receptor. Here, we describe the development of the SpyCatcher immune receptor, the first universal immune receptor that allows for the post-translational covalent attachment of targeting ligands at the T-cell surface through the application of SpyCatcher-SpyTag chemistry.

View Article and Find Full Text PDF

The high specificity and strong binding affinity of antibodies, most commonly immunoglobulin G (IgG), have led to their use in a wide range of research, diagnostic and therapeutic applications. Many of these applications require the antibody to be labeled with additional chemical or biological moieties. Here, we describe a method for the rapid and site-specific labeling of nearly any "off-the-shelf" IgG.

View Article and Find Full Text PDF