In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals.
View Article and Find Full Text PDFHuman awareness of left space may be disrupted by cerebral lesions to the right hemisphere (hemispatial neglect). Current knowledge on the anatomical bases of this complex syndrome is based on the results of group studies that investigated primarily the best known aspect of the syndrome, which is visual neglect for near extrapersonal (or peripersonal) space. However, another component-neglect for personal space-is more often associated with, than double-dissociated from, extrapersonal neglect, especially, in chronic patients.
View Article and Find Full Text PDFThe retinotopic organization of a newly identified visual area near the midline in the dorsalmost part of the human parieto-occipital sulcus was mapped using high-field functional magnetic resonance imaging, cortical surface-based analysis, and wide-field retinotopic stimulation. This area was found in all 34 subjects that were mapped. It represents the contralateral visual hemifield in both hemispheres of all subjects, with upper fields located anterior and medial to areas V2/V3, and lower fields medial and slightly anterior to areas V3/V3A.
View Article and Find Full Text PDFThis study aimed to characterize the neural generators of the steady-state visual evoked potential (SSVEP) to repetitive, 6 Hz pattern-reversal stimulation. Multichannel scalp recordings of SSVEPs and dipole modeling techniques were combined with functional magnetic resonance imaging (fMRI) and retinotopic mapping in order to estimate the locations of the cortical sources giving rise to the SSVEP elicited by pattern reversal. The time-varying SSVEP scalp topography indicated contributions from two major cortical sources, which were localized in the medial occipital and mid-temporal regions of the contralateral hemisphere.
View Article and Find Full Text PDFWe set out to investigate how the expertise of a sommelier is embodied in neural circuitry by comparing brain activity elicited by wine tasting with that found in naive drinkers of wine. We used fMRI to study 7 sommeliers and 7 age- and sex-matched control subjects to test the hypothesis that any difference in brain activity would reflect a learned ability to integrate information from gustatory and olfactory senses with past experience. A group analysis showed activation of a cerebral network involving the left insula and adjoining orbito-frontal cortex in sommeliers.
View Article and Find Full Text PDFThis study aimed to characterize the neural generators of the early components of the visual-evoked potential (VEP) to pattern-reversal gratings. Multichannel scalp recordings of VEPs and dipole modeling techniques were combined with functional magnetic resonance imaging (fMRI) and retinotopic mapping in order to estimate the locations of the cortical sources giving rise to VEP components in the first 200 ms poststimulus. Dipole locations were seeded to visual cortical areas in which fMRI activations were elicited by the same stimuli.
View Article and Find Full Text PDFQuantitative mapping of the effective transverse relaxation time, T2* and proton density was performed in a motor activation functional MRI (fMRI) study using multi-echo, echo planar imaging (EPI) and NumART2* (Numerical Algorithm for Real time T2*). Comparisons between NumART2* and conventional single echo EPI with an echo time of 64 ms were performed for five healthy participants examined twice. Simulations were also performed to address specific issues associated with the two techniques, such as echo time-dependent signal variation.
View Article and Find Full Text PDF