The search for sustainable alternatives to established materials is a sensitive topic in materials science. Due to their unique structural and physical characteristics, the composition of metal-organic frameworks (MOFs) can be tuned by the exchange of metal nodes and the functionalization of organic ligands, giving rise to a large configurational space. Considering the case of scandium terephthalate MOFs and adopting an automatized computational framework based on density-functional theory, we explore the impact of metal substitution with the earth-abundant isoelectronic elements Al and Y, and ligand functionalization of varying electronegativity.
View Article and Find Full Text PDFMicroscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al-Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, charge-density distribution, and electronic properties (band gaps and density of states).
View Article and Find Full Text PDF