ACS Omega
August 2023
The study evaluated the effect of the carotenoid-rich extract from cantaloupe melon (CE) nanoencapsulated in porcine gelatin (EPG) on hepatic retinol concentration and liver damage scores in Wistar rats with obesity induced by high glycemic index and high glycemic load diet (HGLI diet). For 17 days, animals were fed the HGLI diet. They were divided into three groups and treated for 10 days [HGLI diet + water, HGLI diet + CE (12.
View Article and Find Full Text PDFThe present study investigated the effect of gelatin-based nanoparticles (EPG) loaded with a carotenoid-rich crude extract (CE) on systemic and adipose tissue inflammatory response in a model with inflammation induced by a high glycemic index and high glycemic load diet (HGLI). Nanoparticles synthesized were characterized by different physical and chemical methods. The in vivo investigation evaluated Wistar rats (n = 20, 11 days, adult male with 21 weeks) subdivided into untreated (HGLI diet), conventional treatment (nutritionally adequate diet), treatment 1 (HGLI + crude extract (12.
View Article and Find Full Text PDFIntroduction: Obesity has emerged as one of the main public health problems. This condition triggers a series of hormonal and metabolic changes related to a low-grade chronic inflammatory condition. The trypsin inhibitor purified from tamarind (TTIp) seeds is a promising anti-inflammatory molecule, but its safety needs to be evaluated.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
December 2020
The safety and bioactive potential of crude carotenoid extract from Cantaloupe melon nanoencapsulated in porcine gelatin (EPG) were evaluated in a chronic inflammatory experimental model. Animals were fed a high glycemic index and high glycemic load (HGLI) diet for 17 weeks and treated for ten days with 1) HGLI diet, 2) standard diet, 3) HGLI diet + crude carotenoid extract (CE) (12.5 mg/kg), and 4) HGLI diet + EPG (50 mg/kg).
View Article and Find Full Text PDFThe increasing prevalence of obesity and, consequently, chronic inflammation and its complications has increased the search for new treatment methods. The effect of the purified tamarind seed trypsin inhibitor (TTIp) on metabolic alterations in Wistar rats with obesity and dyslipidemia was evaluated. Three groups of animals with obesity and dyslipidemia were formed, consuming a high glycemic index and glycemic load (HGLI) diet, for 10 days: Obese/HGLI diet; Obese/standard diet; Obese/HGLI diet + TTIp (730 μg/kg); and one eutrophic group of animals was fed a standard diet.
View Article and Find Full Text PDFObjective: This study evaluated the effect of a protein, the isolated Trypsin Inhibitor (TTI) from Tamarindus indica L. seed, as a CCK secretagogue and its action upon food intake and leptin in obese Wistar rats.
Methods: Three groups of obese rats were fed 10 days one of the following diets: Standard diet (Labina®) + water; High Glycemic Index and Load (HGLI) diet + water or HGLI diet + TTI.
J Enzyme Inhib Med Chem
December 2018
A trypsin inhibitor isolated from tamarind seed (TTI) has satietogenic effects in animals, increasing the cholecystokinin (CCK) in eutrophy and reducing leptin in obesity. We purified TTI (pTTI), characterised, and observed its effect upon CCK and leptin in obese Wistar rats. By HPLC, and after amplification of resolution, two protein fractions were observed: Fr1 and Fr2, with average mass of [M + 14H] = 19,594,690 Da and [M + 13H] = 19,578,266 Da, respectively.
View Article and Find Full Text PDFTrypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI) in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In this study, we evaluated TTI effect upon satiety, biochemical and inflammatory parameters in an experimental model of metabolic syndrome (MetS).
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2016
Ingestion of peanuts may have a beneficial effect on weight control, possibly due to the satietogenic action of trypsin inhibitors. The aim of this study was to isolate a new trypsin inhibitor in a typical Brazilian peanut sweet (paçoca) and evaluate its effect in biochemical parameters, weight gain and food intake in male Wistar rats. The trypsin inhibitor in peanut paçoca (AHTI) was isolated.
View Article and Find Full Text PDF