Publications by authors named "Fabiana Bahna"

Sevenless (Sev) is a Drosophila receptor tyrosine kinase (RTK) required for the specification of the R7 photoreceptor. It is cleaved into α and β subunits and binds the ectodomain of the G-protein-coupled receptor bride of sevenless (Boss). Previous work showed that the Boss ectodomain could bind but not activate Sev; rather, the whole seven-pass transmembrane Boss was required.

View Article and Find Full Text PDF

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations.

View Article and Find Full Text PDF
Article Synopsis
  • Computational free energy-based methods can enhance the efficiency and reduce the costs in protein design by requiring high reliability, accuracy, and automation for practical use in industry.
  • This study benchmarks the calculation of changes in protein-protein binding affinity due to single point mutations and utilizes free energy perturbation (FEP+) for improved outcomes.
  • The authors introduce a new method for evaluating protonation states and develop an automated script to identify and correct outlier cases, demonstrating the application of FEP+ in real-world protein design alongside identifying areas for future research.
View Article and Find Full Text PDF

Self-recognition is a fundamental cellular process across evolution and forms the basis of neuronal self-avoidance1-4. Clustered protocadherins (Pcdh), comprising a large family of isoform-specific homophilic recognition molecules, play a pivotal role in neuronal self-avoidance required for mammalian brain development5-7. The probabilistic expression of different Pcdh isoforms confers unique identities upon neurons and forms the basis for neuronal processes to discriminate between self and non-self5,6,8.

View Article and Find Full Text PDF

The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this study we focus on a subset of RBD mutations that have been frequently observed in infected individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies but discrepancies do arise due to differences in experimental methods and to protocol differences even when a single method is used.

View Article and Find Full Text PDF

Neurons in the developing brain express many different cell adhesion molecules (CAMs) on their surfaces. CAM-binding affinities can vary by more than 200-fold, but the significance of these variations is unknown. Interactions between the immunoglobulin superfamily CAM DIP-α and its binding partners, Dpr10 and Dpr6, control synaptic targeting and survival of Drosophila optic lobe neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The expression of clustered protocadherin (cPcdh) isoforms allows individual vertebrate neurons to develop unique identities and mechanisms for distinguishing self from nonself.
  • cPcdhs interact in a way that promotes the formation of diverse recognition units, where specific combinations of isoforms can grow together or be terminated based on their compatibility.
  • Recent experiments indicate that while cPcdh interactions are generally promiscuous, they show a preference for forming heterologous dimers and maintain precise homophilic interactions, with new structural data shedding light on these processes.
View Article and Find Full Text PDF
Article Synopsis
  • Antiviral monoclonal antibody (mAb) discovery aims to develop effective treatments for viral infections, but traditional methods are often inefficient due to the high affinity of antibodies not always translating to neutralizing activity.
  • Researchers explored screening for anti-SARS-CoV-2 mAbs at lower pH levels, specifically pH 4.5, and found that neutralizing antibodies were more effectively enriched at this acidity compared to physiological pH (7.4).
  • A new antibody, LP5, was identified that targets a key area of the SARS-CoV-2 virus, demonstrating the potential of low pH screening to enhance the discovery of effective antiviral antibodies.
View Article and Find Full Text PDF

Antibodies that potently neutralize SARS-CoV-2 target mainly the receptor-binding domain or the N-terminal domain (NTD). Over a dozen potently neutralizing NTD-directed antibodies have been studied structurally, and all target a single antigenic supersite in NTD (site 1). Here, we report the cryo-EM structure of a potent NTD-directed neutralizing antibody 5-7, which recognizes a site distinct from other potently neutralizing antibodies, inserting a binding loop into an exposed hydrophobic pocket between the two sheets of the NTD β sandwich.

View Article and Find Full Text PDF

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments.

View Article and Find Full Text PDF

Unlabelled: Antibodies that potently neutralize SARS-CoV-2 target mainly the receptor-binding domain or the N-terminal domain (NTD). Over a dozen potently neutralizing NTD-directed antibodies have been studied structurally, and all target a single antigenic supersite in NTD (site 1). Here we report the 3.

View Article and Find Full Text PDF

Antibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies yet identified. To provide insight into whether these genetic similarities inform common modes of recognition, we determine the structures of the SARS-CoV-2 spike in complex with three VH1-2-derived antibodies: 2-15, 2-43, and H4. All three use VH1-2-encoded motifs to recognize the receptor-binding domain (RBD), with heavy-chain N53I-enhancing binding and light-chain tyrosines recognizing F486.

View Article and Find Full Text PDF

Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD.

View Article and Find Full Text PDF

In the mouse, the osteoblast-derived hormone Lipocalin-2 (LCN2) suppresses food intake and acts as a satiety signal. We show here that meal challenges increase serum LCN2 levels in persons with normal or overweight, but not in individuals with obesity. Postprandial LCN2 serum levels correlate inversely with hunger sensation in challenged subjects.

View Article and Find Full Text PDF

Neurite self-recognition and avoidance are fundamental properties of all nervous systems. These processes facilitate dendritic arborization, prevent formation of autapses and allow free interaction among non-self neurons. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, β- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities.

View Article and Find Full Text PDF

Clustered protocadherins (Pcdhs) mediate numerous neural patterning functions, including neuronal self-recognition and non-self-discrimination to direct self-avoidance among vertebrate neurons. Individual neurons stochastically express a subset of Pcdh isoforms, which assemble to form a stochastic repertoire of -dimers. We describe the structure of a PcdhγB7 -homodimer, which includes the membrane-proximal extracellular cadherin domains EC5 and EC6.

View Article and Find Full Text PDF

Stochastic cell-surface expression of α-, β-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing -homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict -interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain.

View Article and Find Full Text PDF

Clustered protocadherin proteins (α-, β-, and γ-Pcdhs) provide a high level of cell-surface diversity to individual vertebrate neurons, engaging in highly specific homophilic interactions to mediate important roles in mammalian neural circuit development. How Pcdhs bind homophilically through their extracellular cadherin (EC) domains among dozens of highly similar isoforms has not been determined. Here, we report crystal structures for extracellular regions from four mouse Pcdh isoforms (α4, α7, β6, and β8), revealing a canonical head-to-tail interaction mode for homophilic trans dimers comprising primary intermolecular EC1:EC4 and EC2:EC3 interactions.

View Article and Find Full Text PDF

Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific homophilic binding between cells, conferring cell recognition through a poorly understood mechanism. Here, we report crystal structures for the EC1-EC3 domain regions from four protocadherin isoforms representing the α, β, and γ subfamilies.

View Article and Find Full Text PDF

Type I cadherin cell-adhesion proteins are similar in sequence and structure and yet are different enough to mediate highly specific cell-cell recognition phenomena. It has previously been shown that small differences in the homophilic and heterophilic binding affinities of different type I family members can account for the differential cell-sorting behavior. Here we use a combination of X-ray crystallography, analytical ultracentrifugation, surface plasmon resonance and double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy to identify the molecular determinants of type I cadherin dimerization affinities.

View Article and Find Full Text PDF

Epithelial cadherin (E-cadherin), a member of the classical cadherin family, mediates calcium-dependent homophilic cell-cell adhesion. Crystal structures of classical cadherins reveal an adhesive dimer interface featuring reciprocal exchange of N-terminal β-strands between two protomers. Previous work has identified a putative intermediate (called the "X-dimer") in the dimerization pathway of wild-type E-cadherin EC1-EC2 domains, based on crystal structures of mutants not capable of strand swapping and on deceleration of binding kinetics by mutations at the X-dimer interface.

View Article and Find Full Text PDF

Vertebrate classical cadherins mediate selective calcium-dependent cell adhesion by mechanisms now understood at the atomic level. However, structures and adhesion mechanisms of cadherins from invertebrates, which are highly divergent yet function in similar roles, remain unknown. Here we present crystal structures of three- and four-tandem extracellular cadherin (EC) domain segments from Drosophila N-cadherin (DN-cadherin), each including the predicted N-terminal EC1 domain (denoted EC1') of the mature protein.

View Article and Find Full Text PDF

Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the 'swapping' of N-terminal β-strands. We use molecular simulations, measurements of binding affinities and X-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers that arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca(2+) ions.

View Article and Find Full Text PDF