Publications by authors named "Fabian U Zwettler"

This chapter provides a step-by-step protocol how to prepare expansion microcoscopy (ExM) treated biological samples for imaging with single-molecule localization microscopy (SMLM). For this purpose, the protocol describes the stabilization of expanded hydrogels that enables addition of photoswitching buffer without shrinkage of the sample. In addition, a guide for automated image analysis and expansion factor determination of expanded fiber-like structures is provided at the end of the chapter.

View Article and Find Full Text PDF

Expansion microscopy (ExM) enables super-resolution fluorescence imaging of physically expanded biological samples with conventional microscopes. By combining ExM with single-molecule localization microscopy (SMLM) it is potentially possible to approach the resolution of electron microscopy. However, current attempts to combine both methods remained challenging because of protein and fluorophore loss during digestion or denaturation, gelation, and the incompatibility of expanded polyelectrolyte hydrogels with photoswitching buffers.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a meiosis-specific nuclear multiprotein complex that is essential for proper synapsis, recombination and segregation of homologous chromosomes. We combined structured illumination microscopy (SIM) with different expansion microscopy (ExM) protocols including U-ExM, proExM, and magnified analysis of the proteome (MAP) to investigate the molecular organization of the SC. Comparison with structural data obtained by single-molecule localization microscopy of unexpanded SCs allowed us to investigate ultrastructure preservation of expanded SCs.

View Article and Find Full Text PDF

Determining the structure and composition of macromolecular assemblies is a major challenge in biology. Here we describe ultrastructure expansion microscopy (U-ExM), an extension of expansion microscopy that allows the visualization of preserved ultrastructures by optical microscopy. This method allows for near-native expansion of diverse structures in vitro and in cells; when combined with super-resolution microscopy, it unveiled details of ultrastructural organization, such as centriolar chirality, that could otherwise be observed only by electron microscopy.

View Article and Find Full Text PDF

Web spiders assemble spidroin monomers into silk fibres of unrivalled tensile strength at remarkably high spinning speeds of up to 1 m s(-1). The spidroin N-terminal domain contains a charge-driven, pH-sensitive relay that controls self-association by an elusive mechanism. The underlying kinetics have not yet been reported.

View Article and Find Full Text PDF