Publications by authors named "Fabian Stutzki"

Significance: Conventional diagnosis of laryngeal cancer is normally made by a combination of endoscopic examination, a subsequent biopsy, and histopathology, but this requires several days and unnecessary biopsies can increase pathologist workload. Nonlinear imaging implemented through endoscopy can shorten this diagnosis time, and localize the margin of the cancerous area with high resolution.

Aim: Develop a rigid endomicroscope for the head and neck region, aiming for multimodal imaging with a large field of view (FOV) and tissue ablation.

View Article and Find Full Text PDF

Two-stage multipass-cell compression of a fiber-chirped-pulse amplifier system to the few-cycle regime is presented. The output delivers a sub-2-cycle (5.8 fs), 107 W average power, 1.

View Article and Find Full Text PDF

In this Letter, we present, to the best of our knowledge, the largest effective single-mode fiber reported to date. The employed waveguide is a passive large pitch fiber (LPF), which shows the core area scaling potential of such a fiber structure. In particular, we achieved stable single-transverse mode transmission at a wavelength of 1.

View Article and Find Full Text PDF

The development of high-power, broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications in medical diagnostics, spectroscopy, microscopy, and fundamental science. One of the major, long-standing challenges in improving the performance of these applications has been the construction of compact, broadband mid-infrared radiation sources, which unify the properties of high brightness and spatial and temporal coherence. Due to the lack of such radiation sources, several emerging applications can be addressed only with infrared (IR)-beamlines in large-scale synchrotron facilities, which are limited regarding user access and only partially fulfill these properties.

View Article and Find Full Text PDF

It has been recently shown that photodarkening can significantly reduce the mode instability threshold in high power Yb-doped fiber amplifiers, thus resulting in an even more severe limitation to the scaling of the output average power of these systems. Therefore, an efficient reduction of photodarkening in an Yb-doped active fiber will lead to very significant gains in the output average power delivered by such systems. In this context, it has been reported that photodarkening can be significantly mitigated when co-doping a fiber core with Al and P, which makes this approach potentially appealing to increase the TMI threshold.

View Article and Find Full Text PDF

We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl, CCl). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 μm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (CCl).

View Article and Find Full Text PDF

We report on detailed in situ distributed temperature measurements inside a high power fiber amplifier. The deducted thermal load and the transversal mode instability (TMI) threshold of a commercial large mode area fiber with 25 μm core and 400 μm cladding were measured at various seed wavelengths. By matching these results with detailed simulations we show that photodarkening has a negligible impact on the thermal load and, therefore, on the TMI threshold in this fiber.

View Article and Find Full Text PDF

Excess relative intensity noise (RIN) constitutes one of the major limitations of most spectroscopic methods involving lasers. Here, we present an active RIN suppression scheme for a coherent mid-infrared (MIR) light source (8.4-11 µm), based on intra-pulse difference frequency generation (DFG).

View Article and Find Full Text PDF

The discovery of optical solitons being understood as temporally and spectrally stationary optical states has enabled numerous innovations among which, most notably, supercontinuum light sources have become widely used in both fundamental and applied sciences. Here, we report on experimental evidence for dynamics of hybrid solitons-a new type of solitary wave, which emerges as a result of a strong non-instantaneous nonlinear response in CS-filled liquid-core optical fibres. Octave-spanning supercontinua in the mid-infrared region are observed when pumping the hybrid waveguide with a 460 fs laser (1.

View Article and Find Full Text PDF

We present a rigorous study on the impact of atmospheric molecular absorption on the linear propagation of ultrashort pulses in the mid-infrared wavelength region. An ultrafast thulium-based fiber laser was employed to experimentally investigate ultrashort-pulse propagation through the atmosphere in a spectral region containing several strong molecular absorption lines. The atmospheric absorption profile causes a significant degradation of the pulse quality in the time domain as well as a distortion of the transverse beam profile in the spatial domain.

View Article and Find Full Text PDF

Tm-based fiber-laser systems are an attractive concept for the development of high-performance laser sources in the spectral region around 2 μm wavelength. Here we present a system delivering a pulse-peak power higher than 200 MW in combination with 24 W average power and 120 μJ pulse energy. Key components enabling this performance level are a Tm-doped large-pitch fiber with a mode-field diameter of 65 μm, highly efficient dielectric gratings, and a Tm-based fiber oscillator operating in the stretched-pulse regime.

View Article and Find Full Text PDF

This Letter reports on a fiber-laser system that, employing a 1 m long rod-type photonic-crystal fiber as its main-amplifier, emits a record average output power of 2 kW, by amplifying stretched ps-pulses. A further increase of the output power was only limited by the available laser-diode pump power. The energy of the pulses is 100 μJ, corresponding to MW-level peak powers extracted directly from the fiber of the main amplifier.

View Article and Find Full Text PDF

A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.

View Article and Find Full Text PDF

Mode instabilities (MIs) have quickly become the most limiting effect for the average power scaling of nearly diffraction-limited beams from state-of-the-art fiber laser systems. In this work it is shown that, by using an advanced multicore photonic crystal fiber design, the threshold power of MIs can be increased linearly with the number of cores. An average output power of 536 W, corresponding to 4 times the threshold power of a single core, is demonstrated.

View Article and Find Full Text PDF

We present a novel ytterbium (Yb)-doped large-pitch fiber design with significantly increased pump absorption and higher energy storage/gain per unit length, which enables high-peak-power fiber laser systems with smaller footprints. Up to now index matching between core and surrounding material in microstructured fibers was achieved by co-doping the active core region with fluorine. Here we carry out the index matching by passively doping the cladding with germanium, thus raising its index of refraction.

View Article and Find Full Text PDF

Mode instabilities have quickly become the most limiting effect when it comes to scaling the output average power of fiber laser systems. In consequence, there is an urgent need for effective strategies to mitigate it and, thus, to increase the power threshold at which it appears. Passive mitigation strategies can be classified into intrinsic, which are related to the fiber design, and extrinsic, which require a modification of the setup.

View Article and Find Full Text PDF

We demonstrate an approach to actively stabilize the beam profile of a fiber amplifier above the mode instability threshold. Both the beam quality and the pointing stability are significantly increased at power levels of up to three times the mode instabilities threshold. The physical working principle is discussed at the light of the recently published theoretical explanations of mode instabilities.

View Article and Find Full Text PDF

We investigate high-power operation of a very-large-mode-area (VLMA) fiber concept based on an index-antiguiding, thermally guiding core in which an ytterbium-doped region is completely surrounded by silica with a slightly higher refractive index. Experimentally, regimes of antiguidance, single-mode operation, and mode instabilities predominantly with radially symmetric higher-order modes are observed. Fundamental limitations for conventional VLMA step-index fibers are discussed.

View Article and Find Full Text PDF

We report on a high pulse energy and high average power Q-switched Tm-doped fiber oscillator. The oscillator produces 2.4 mJ pulses with 33 W average power (at a repetition rate of 13.

View Article and Find Full Text PDF

Large-pitch photonic-crystal fibers have demonstrated their unique capability of combining very large mode areas, high output powers and robust single-mode operation at a wavelength of 1 μm. In this Letter, we present the experimental realization of thulium-doped very large mode-area fibers based on the large-pitch fibers with record mode-field diameters exceeding 60 μm and delivering more than 52 W of output power.

View Article and Find Full Text PDF

The temporal behavior of mode instabilities in active large mode area fibers is experimentally investigated in detail. Thus, apart from the onset threshold of mode instabilities, the output beam is characterized using both high-speed camera measurements with 20,000 frames per second and photodiode traces. Based on these measurements, an empiric definition of the power threshold of mode instabilities is introduced.

View Article and Find Full Text PDF

Mode instabilities, i.e. the rapid fluctuations of the output beam of an optical fiber that occur after a certain output power threshold is reached, have quickly become one of the most limiting effects for the further power scaling of fiber laser systems.

View Article and Find Full Text PDF

We demonstrate a Q-switched fiber laser system emitting sub-60 ns pulses with 26 mJ pulse energy and near-diffraction-limited beam quality (M2<1.3). In combination with a repetition rate of 5 kHz, a corresponding average output power of 130 W is achieved.

View Article and Find Full Text PDF

Thermally induced waveguide changes become significant for very large mode area fibers. This results in a reduction of the mode-field diameter, but simultaneously in an improvement of the beam quality. In this work the first systematic experimental characterization of the reduction of the mode-field diameter in various fibers during high-power operation is carried out.

View Article and Find Full Text PDF

Mode-interference along an active fiber in high-power operation gives rise to a longitudinally oscillating temperature profile which, in turn, is converted into a strong index grating via the thermo-optic effect. In the case of mode beating between the fundamental mode and a radially anti-symmetric mode such a grating exhibits two periodic features: a main one which is radially symmetric and has half the period of the modal beating, and a second one that closely follows the mode interference pattern and has its same period. In the case of modal beating between two radially symmetric modes the thermally induced grating only has radially symmetric features and exhibits the same period of the mode interference.

View Article and Find Full Text PDF