Navigation in ever-changing environments requires effective motor behaviors. Many insects have developed adaptive movement patterns which increase their success in achieving navigational goals. A conserved brain area in the insect brain, the Lateral Accessory Lobe, is involved in generating small scale search movements which increase the efficacy of sensory sampling.
View Article and Find Full Text PDFThe lateral accessory lobes (LALs), paired structures that are homologous among all insect species, have been well studied for their role in pheromone tracking in silkmoths and phonotaxis in crickets, where their outputs have been shown to correlate with observed motor activity. Further studies have shown more generally that the LALs are crucial both for an insect's ability to steer correctly and for organising the outputs of the descending pathways towards the motor centres. In this context, we propose a framework by which the LALs may be generally involved in generating steering commands across a variety of insects and behaviours.
View Article and Find Full Text PDFUnderstanding the computational basis of spatial cognition requires observations of natural behaviour and the underlying neural circuits, which are difficult to do simultaneously: however, recent studies show how we might achieve this, combining rich virtual reality set-ups and the use of optogenetics in freely moving animals.
View Article and Find Full Text PDF