Publications by authors named "Fabian Schackmar"

The long-term stability of perovskite solar cells (PSCs) remains a bottleneck for commercialization. While studies on the stoichiometry and morphology of PSCs with regard to performance are prevalent, understanding the influence of these factors on their long-term stability is lacking. In this work, we evaluate the impact of stoichiometry and morphology on the long-term stability of cesium formamidinium-based PSCs.

View Article and Find Full Text PDF

The recent tremendous progress in monolithic perovskite-based double-junction solar cells is just the start of a new era of ultra-high-efficiency multi-junction photovoltaics. We report on triple-junction perovskite-perovskite-silicon solar cells with a record power conversion efficiency of 24.4%.

View Article and Find Full Text PDF

Monolithic two-terminal (2T) perovskite/CuInSe (CIS) tandem solar cells (TSCs) combine the promise of an efficient tandem photovoltaic (PV) technology with the simplicity of an all-thin-film device architecture that is compatible with flexible and lightweight PV. In this work, we present the first-ever 2T perovskite/CIS TSC with a power conversion efficiency (PCE) approaching 25% (23.5% certified, area 0.

View Article and Find Full Text PDF

The spontaneous phase separation of two or more polymers is a thermodynamic process that can take place in both biological and synthetic materials and which results in the structuring of the matter from the micro- to the nanoscale. For photonic applications, it allows forming quasi-periodic or disordered assemblies of light scatterers at high throughput and low cost. The wet process methods currently used to fabricate phase-separated nanostructures (PSNs) limit the design possibilities, which in turn hinders the deployment of PSNs in commercialized products.

View Article and Find Full Text PDF

One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g.

View Article and Find Full Text PDF

Flexible direct conversion X-ray detectors enable a variety of novel applications in medicine, industry, and science. Hybrid organic-inorganic perovskite semiconductors containing elements of high atomic number combine an efficient X-ray absorption with excellent charge transport properties. Due to their additional cost-effective and low-temperature processability, perovskite semiconductors represent promising candidates to be used as active materials in flexible X-ray detectors.

View Article and Find Full Text PDF

Hybrid organic-inorganic metal halide perovskite semiconductors provide opportunities and challenges for the fabrication of low-cost thin-film photovoltaic devices. The opportunities are clear: the power conversion efficiency (PCE) of small-area perovskite photovoltaics has surpassed many established thin-film technologies. However, the large-scale solution-based deposition of perovskite layers introduces challenges.

View Article and Find Full Text PDF

In this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique.

View Article and Find Full Text PDF