The availability of magnetic nanoparticles (MNPs) with medical approval for human intervention is fundamental to the clinical translation of magnetic particle imaging (MPI). In this work, we thoroughly evaluate and compare the magnetic properties of an magnetic resonance imaging (MRI) approved tracer to validate its performance for MPI in future human trials.We analyze whether the recently approved MRI tracer Resotran is suitable for MPI.
View Article and Find Full Text PDFIn magnetic particle imaging, a field-free region is maneuvered throughout the field of view using a time-varying magnetic field known as the drive-field. Human-sized systems operate the drive-field in the kHz range and generate it by utilizing strong currents that can rise to the kA range within a coil called the drive field generator. Matching and tuning between a power amplifier, a band-pass filter, and the drive-field generator is required.
View Article and Find Full Text PDFGastrointestinal bleeding, as a potentially life-threatening condition, is typically diagnosed by radiation-based imaging modalities like computed tomography or more invasively catheter-based angiography. Endoscopy enables examination of the upper gastrointestinal tract and the colon but not of the entire small bowel. Magnetic Particle Imaging (MPI) enables non-invasive, volumetric imaging without ionizing radiation.
View Article and Find Full Text PDFMagnetic particle imaging (MPI) is capable of high temporal resolution measurements of the spatial distribution of magnetic nanoparticles and therefore well suited for perfusion imaging, which is an important tool in medical diagnosis. Perfusion imaging in MPI usually requires a fresh bolus of tracer material to capture the key signal dynamics. Here, we propose a method to decouple the imaging sequence from the injection of additional tracer material, without further increasing the administered iron dose in the body with each image.
View Article and Find Full Text PDFImproving resolution and sensitivity will widen possible medical applications of magnetic particle imaging. Pulsed excitation promises such benefits, at the cost of more complex hardware solutions and restrictions on drive field amplitude and frequency. State-of-the-art systems utilize a sinusoidal excitation to drive superparamagnetic nanoparticles into the non-linear part of their magnetization curve, which creates a spectrum with a clear separation of direct feed-through and higher harmonics caused by the particles response.
View Article and Find Full Text PDFThe Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution.
View Article and Find Full Text PDFC60-functionalized tips are used to probe C60 molecules on Cu(111) with scanning tunneling and atomic force microscopy. Distinct and complex intramolecular contrasts are found. Maximal attractive forces are observed when for both molecules a [6,6] bond faces a hexagon of the other molecule.
View Article and Find Full Text PDFH-Benzo[cd]pyrene ('Olympicene') is a polyaromatic hydrocarbon and non-Kekulé fragment of graphene. A new synthetic method has been developed for the formation of 6H-benzo[cd]pyrene and related ketones including the first time isolation of the unstable alcohol 6H-benzo[cd]pyren-6-ol. Molecular imaging of the reaction products with scanning tunnelling microscopy (STM) and non-contact atomic force microscopy (NC-AFM) characterised the 6H-benzo[cd]pyrene as well as the previously intangible and significantly less stable 5H-benzo[cd]pyrene, the fully conjugated benzo[cd]pyrenyl radical and the ketones as oxidation products.
View Article and Find Full Text PDFWe show that the different bond orders of individual carbon-carbon bonds in polycyclic aromatic hydrocarbons and fullerenes can be distinguished by noncontact atomic force microscopy (AFM) with a carbon monoxide (CO)-functionalized tip. We found two different contrast mechanisms, which were corroborated by density functional theory calculations: The greater electron density in bonds of higher bond order led to a stronger Pauli repulsion, which enhanced the brightness of these bonds in high-resolution AFM images. The apparent bond length in the AFM images decreased with increasing bond order because of tilting of the CO molecule at the tip apex.
View Article and Find Full Text PDFScanning tunneling microscopy (STM) and atomic force microscopy (AFM) of single atoms and molecules on ultrathin insulating films have led to a wealth of novel observations and insights. Based on the reduced electronic coupling to the metallic substrate, these techniques allow the charge state of individual atoms to be controlled, orbitals of individual molecules to be imaged and metal-molecule complexes to be built up. Near-contact AFM adds the unique capabilities of imaging and probing the chemical structure of single molecules with atomic resolution.
View Article and Find Full Text PDFScanning tunnelling microscopy and atomic force microscopy can be used to study the electronic and structural properties of surfaces, as well as molecules and nanostructures adsorbed on surfaces, with atomic precision, but they cannot directly probe the distribution of charge in these systems. However, another form of scanning probe microscopy, Kelvin probe force microscopy, can be used to measure the local contact potential difference between the scanning probe tip and the surface, a quantity that is closely related to the charge distribution on the surface. Here, we use a combination of scanning tunnelling microscopy, atomic force microscopy and Kelvin probe force microscopy to examine naphthalocyanine molecules (which have been used as molecular switches) on a thin insulating layer of NaCl on Cu(111).
View Article and Find Full Text PDFIndividual pentacene and naphthalocyanine molecules adsorbed on a bilayer of NaCl grown on Cu(111) were investigated by means of scanning tunneling microscopy using CO-functionalized tips. The images of the frontier molecular orbitals show an increased lateral resolution compared with those of the bare tip and reflect the modulus squared of the lateral gradient of the wave functions. The contrast is explained by tunneling through the p-wave orbitals of the CO molecule.
View Article and Find Full Text PDFWe report on the formation of a metal-molecule complex that can be used as a molecular switch. Using a cryogenic scanning tunneling microscope, a covalent bond was formed reversibly between a gold atom and a perylene-3,4,9,10-tetracarboxylic dianhydride molecule supported by a thin insulating film. The bonded and the nonbonded state of the complex were found to be associated with different charge states, and the switching between the two states was accompanied by a considerable change in the tunneling current.
View Article and Find Full Text PDFNature offers a huge and only partially explored variety of small molecules with potential pharmaceutical applications. Commonly used characterization methods for natural products include spectroscopic techniques such as nuclear magnetic resonance spectroscopy and mass spectrometry. In some cases, however, these techniques do not succeed in the unambiguous determination of the chemical structure of unknown compounds.
View Article and Find Full Text PDFResolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the local electron density of states close to the Fermi level. We demonstrate imaging of molecules with unprecedented atomic resolution by probing the short-range chemical forces with use of noncontact atomic force microscopy.
View Article and Find Full Text PDFCharge states of atoms can be investigated with scanning tunneling microscopy, but this method requires a conducting substrate. We investigated the charge-switching of individual adsorbed gold and silver atoms (adatoms) on ultrathin NaCl films on Cu(111) using a qPlus tuning fork atomic force microscope (AFM) operated at 5 kelvin with oscillation amplitudes in the subangstrom regime. Charging of a gold atom by one electron charge increases the force on the AFM tip by a few piconewtons.
View Article and Find Full Text PDF