Smart agriculture tools as well as advanced studies on agrochemicals and plant biostimulants aim to improve crop productivity and more efficient use of resources without sacrificing sustainability. Recently, multiple advanced sensors for agricultural applications have been developed, however much less advancement is reported in the field of precise delivery of agriculture chemicals. The organic electronic ion pump (OEIP) enables electrophoretically-controlled delivery of ionic molecules in the plant tissue, however it needs external power-supplies complicating its application in the field.
View Article and Find Full Text PDFEnergy harvesting techniques can exploit even subtle passive motion like that of plant leaves in wind as a consequence of contact electrification of the leaf surface. The effect is strongly enhanced by artificial materials installed as 'artificial leaves' on the natural leaves creating a recurring mechanical contact and separation. However, this requires a controlled mechanical interaction between the biological and the artificial component during the complex wind motion.
View Article and Find Full Text PDFHigh-tech sensors, energy harvesters, and robots are increasingly being developed for operation on plant leaves. This introduces an extra load which the leaf must withstand, often under further dynamic forces like wind. Here, we took the example of mechanical energy harvesters that consist of flat artificial "leaves" fixed on the petioles of , converting wind energy into electricity.
View Article and Find Full Text PDFAs miscellaneous as the Plant Kingdom is, correspondingly diverse are the opportunities for taking inspiration from plants for innovations in science and engineering. Especially in robotics, properties like growth, adaptation to environments, ingenious materials, sustainability, and energy-effectiveness of plants provide an extremely rich source of inspiration to develop new technologies-and many of them are still in the beginning of being discovered. In the last decade, researchers have begun to reproduce complex plant functions leading to functionality that goes far beyond conventional robotics and this includes sustainability, resource saving, and eco-friendliness.
View Article and Find Full Text PDFPlants translate wind energy into leaf fluttering and branch motion by reversible tissue deformation. Simultaneously, the outermost structure of the plant, i.e.
View Article and Find Full Text PDFMaterials capable of actuation through remote stimuli are crucial for untethering soft robotic systems from hardware for powering and control. Fluidic actuation is one of the most applied and versatile actuation strategies in soft robotics. Here, the first macroscale soft fluidic actuator is derived that operates remotely powered and controlled by light through a plasmonically induced phase transition in an elastomeric constraint.
View Article and Find Full Text PDFSurface-patterning colloidal matter in the sub-10 nm regime generates exceptional functionality in biology and photonic and electronic materials. Techniques of artificially generating functional patterns in the small nanoscale advanced in a fascinating manner in the last several years. However, they remain often restricted to planar and noncolloidal substrates.
View Article and Find Full Text PDFNanoparticles (NPs) are often functionalized with reactive groups such as amines and thiols for the subsequent conjugation of further molecules, e.g., stabilizing polymers, drugs, and proteins for targeting cells or specific diseases.
View Article and Find Full Text PDFNanoparticles (NPs) functionalized with two active targeting ligands have been proposed in drug delivery for their promising capability to stimulate different pathways with one object. Due to the multivalency, the construction and analysis of the effective surface of such bifunctional nanoparticles, however, is significantly more complex than for nanoparticles bearing only one ligand. Here, we optimize construction and analysis of bifunctional NPs containing recognizable combinations of human serum albumin (HSA), transferrin (Tf), and epidermal growth factor (EGF) on fluorescent silica NPs grafted via common polyethylene glycol (PEG) linkers as a model system.
View Article and Find Full Text PDFObserving structural integrity of nanoparticles is essential in bionanotechnology but not always straightforward to measure in situ and in real-time. Fluorescent labels used for tracking intrinsically nonfluorescent nanomaterials generally do not allow simultaneous observation of integrity. Consequently, structural changes like degradation and disassembly cannot easily be followed in situ using fluorescence signals.
View Article and Find Full Text PDFThe increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnONP) was investigated in Pacific oysters Crassostrea gigas. The nanoscale of ZnONP, in vehicle or ultrapure water, was confirmed, presenting an average size ranging from 28 to 88 nm.
View Article and Find Full Text PDFEngineered sub-micron particles are being used in many technical applications, leading to an increasing introduction into the aquatic environment. Only a few studies have dealt with the biodegradability of non-functionalized organic particles. In fact the knowledge of organically surface functionalized colloids is nearly non-existent.
View Article and Find Full Text PDFWe show that different ratios of bovine serum albumin (BSA) and lysozyme (LSZ) can be achieved in a mixed protein adsorption layer by tailoring the amounts of carboxyl (-COOH) and aluminum hydroxyl (AlOH) groups on colloidal alumina particles (d50 ≈ 180 nm). The particles are surface-functionalized with -COOH groups, and the resultant surface chemistry, including the remaining AlOH groups, is characterized and quantified using elemental analysis, ζ potential measurements, acid-base titration, IR spectroscopy, electron microscopy, nitrogen adsorption, and dynamic light scattering. BSA and LSZ are subsequently added to the particle suspensions, and protein adsorption is monitored by in situ ζ potential measurements while being quantified by UV spectroscopy and gel electrophoresis.
View Article and Find Full Text PDFSurface functionalization has become of paramount importance and is considered a fundamental tool for the development and design of countless devices and engineered systems for key technological areas in biomedical, biotechnological and environmental applications. In this review, surface functionalization strategies for alumina, zirconia, titania, silica, iron oxide and calcium phosphate are presented and discussed. These materials have become particularly important concerning the aforementioned applications, being not only of great academic, but also of steadily increasing human and commercial, interest.
View Article and Find Full Text PDFUnderstanding the interrelation between surface chemistry of colloidal particles and surface adsorption of biomolecules is a crucial prerequisite for the design of materials for biotechnological and nanomedical applications. Here, we elucidate how tailoring the surface chemistry of colloidal alumina particles (d50 = 180 nm) with amino (-NH2), carboxylate (-COOH), phosphate (-PO3H2) or sulfonate (-SO3H) groups affects adsorption and orientation of the model peptide glutathione disulfide (GSSG). GSSG adsorbed on native, -NH2-functionalized, and -SO3H-functionalized alumina but not on -COOH- and -PO3H2-functionalized particles.
View Article and Find Full Text PDFMaterials that interact in a controlled manner with viruses attract increasing interest in biotechnology, medicine, and environmental technology. Here, we show that virus-material interactions can be guided by intrinsic material surface chemistries, introduced by tailored surface functionalizations. For this purpose, colloidal alumina particles are surface functionalized with amino, carboxyl, phosphate, chloropropyl, and sulfonate groups in different surface concentrations and characterized in terms of elemental composition, electrokinetic, hydrophobic properties, and morphology.
View Article and Find Full Text PDFIn this study, we demonstrate the control of protein adsorption by tailoring the sulfonate group density on the surface of colloidal alumina particles. The colloidal alumina (d(50)=179±8nm) is first accurately functionalized with sulfonate groups (SO(3)H) in densities ranging from 0 to 4.7SO(3)H nm(-2).
View Article and Find Full Text PDFEnviron Sci Technol
January 2012
Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses.
View Article and Find Full Text PDFIn the light of in vitro nanotoxicological studies fluorescence labeling has become standard for particle localization within the cell environment. However, fluorescent labeling is also known to significantly alter the particle surface chemistry and therefore potentially affect the outcome of cell studies. Hence, fluorescent labeling is ideally carried out without changing, for example, the isoelectric point.
View Article and Find Full Text PDFColloidal oxide particles in biomedical or biotechnological applications immediately become coated with proteins of the biological medium, a process which is strongly influenced by the surface characteristics of the particles. Fundamental correlations between surface characteristics and the, so far mainly uncontrollable, protein adsorption are still not clear. In this study the surface of colloidal alumina particles (d(50)=179 ± 8 nm) was systematically adjusted with NH(2), COOH, SO(3)H and PO(3)H(2) functional groups to investigate the influence on the adsorption of the three model proteins, bovine serum albumin (BSA), lysozyme (LSZ) and trypsin (TRY).
View Article and Find Full Text PDF