Background/aim: The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications.
Materials And Methods: After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established biomaterials cerabone and Jason membrane.
Perovskite solar cells promise to deliver high efficiencies at low manufacturing costs. Yet on their way towards commercialization, they have to face the associated risk of potential lead leakage into the environment after damage to the cell's encapsulation. Here we present a new approach to generate a lead binding coating, based on a layer-by-layer deposition of biopolymers.
View Article and Find Full Text PDFBioactive cations, including calcium, copper and magnesium, have shown the potential to become the alternative to protein growth factor-based therapeutics for bone healing. Ion substitutions are less costly, more stable, and more effective at low concentrations. Although they have been shown to be effective in providing bone grafts with more biological functions, the precise control of ion release kinetics is still a challenge.
View Article and Find Full Text PDFDihydrotanshinone I (DHT) is a natural component in and has been widely researched for its multiple bioactivities. However, poor solubility and biocompatibility of DHT limit its desirable application for clinical purposes. Herein, DHT was encapsulated with bovine serum albumin (BSA) to enhance bioavailability.
View Article and Find Full Text PDFBackground/aim: The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications.
Materials And Methods: After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established soft and hard tissue materials cerabone and Jason membrane (both botiss biomaterials GmbH, Zossen, Germany).