Publications by authors named "Fabian Itel"

Core/shell nanofibers offer the advantage of encapsulating multiple drugs with different hydrophilicity in the core and shell, thus allowing for the controlled release of pharmaceutic agents. Specifically, the burst release of hydrophilic drugs from such fiber membranes causes an instantaneous high drug concentration, whereas a long and steady release is usually desired. Herein, we tackle the problem of the initial burst release by the generation of core/shell nanofibers with the hydrophilic antibiotic drug gentamycin loaded within a hydrophilic alginate core surrounded by a hydrophobic shell of poly(ε-caprolactone).

View Article and Find Full Text PDF

The delivery of nanomedicines into cells holds enormous therapeutic potential; however little is known regarding how the extracellular matrix (ECM) can influence cell-nanoparticle (NP) interactions. Changes in ECM organization and composition occur in several pathophysiological states, including fibrosis and tumorigenesis, and may contribute to disease progression. We show that the physical characteristics of cellular substrates, that more closely resemble the ECM in vivo, can influence cell behavior and the subsequent uptake of NPs.

View Article and Find Full Text PDF

Unlabelled: Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency.

View Article and Find Full Text PDF

Electrospun nanofibers have shown great potential as drug vehicles and tissue engineering scaffolds. However, the successful encapsulation of multiple hydrophilic/hydrophobic therapeutic compounds is still challenging. Herein, sodium alginate/poly(ε-caprolactone) core/shell nanofibers were fabricated water-in-oil emulsion electrospinning.

View Article and Find Full Text PDF

Controlling the architecture of engineered scaffolds is of outmost importance to induce a targeted cell response and ultimately achieve successful tissue regeneration upon implantation. Robust, reliable and reproducible methods to control scaffold properties at different levels are timely and highly important. However, the multiscale architectural properties of electrospun membranes are very complex, in particular the role of fiber-to-fiber interactions on mechanical properties, and their effect on cell response remain largely unexplored.

View Article and Find Full Text PDF

Oxygen on its transport route from lung to tissue mitochondria has to cross several cell membranes. The permeability value of membranes for O (P), although of fundamental importance, is controversial. Previous studies by mostly indirect methods diverge between 0.

View Article and Find Full Text PDF

The surface functionalization of electrospun nanofibers allows for the introduction of additional functionalities while at the same time retaining the membrane properties of high porosity and surface-to-volume ratio. In this work, we sequentially deposited layers of chitosan and alginate to form a polyelectrolyte complex via layer-by-layer assembly on PLGA nanofibers to introduce pH-responsiveness for the controlled release of ibuprofen. The deposition of the polysaccharides on the surface of the fibers was revealed using spectroscopy techniques and ζ-potential measurements.

View Article and Find Full Text PDF

Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function. Hybrid vesicles loaded with glucose oxidase (NRGOx) or β-galactosidase (NRβ-Gal) and equipped with lysosomal escape ability are assembled using phospholipids and the block copolymer poly(cholesteryl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate). The co-localization of the building blocks and the catalytic activity of NRGOx and NRβ-Gal are illustrated.

View Article and Find Full Text PDF

Multicompartmentalized microreactors are considered as cell mimics with hierarchical structures inspired by mammalian cells. We report the successful assembly and encapsulation of purified nuclei from RAW 264.7 cells (pNuc) into alginate-based microreactors.

View Article and Find Full Text PDF

Therapeutic cell mimicry aims to provide a source of cell-like assemblies, which exhibit the core structural or functional properties of their natural counterparts with broad envisioned applications in biomedicine. Bone tissue engineering (BTE) aims at promoting and inciting the natural healing process of, for instance, critically sized bone defects. Microreactors designed to co-assemble with biological bone-forming osteoblasts like SaOS-2 cells to start biomineralization are reported for the first time.

View Article and Find Full Text PDF

The assembly of microreactors has made considerable progress toward the fabrication of artificial cells. However, their characterization remains largely limited to buffer solution-based assays in the absence of their natural role model-the biological cells. Herein, the combination of microreactors with HepG2 cells either in planar cell cultures or in the form of cell aggregates is reported.

View Article and Find Full Text PDF

The success of nanoparticulate formulations in drug delivery depends on various aspects including their toxicity, internalization, and intracellular location. Vesicular assemblies consisting of phospholipids and amphiphilic block copolymers are an emerging platform, which combines the benefits from liposomes and polymersomes while overcoming their challenges. We report the synthesis of poly(cholesteryl methacrylate)- block-poly(2-(dimethylamino) ethyl methacrylate) (pCMA- b-pDMAEMA) block copolymers and their assembly with phospholipids into hybrid vesicles.

View Article and Find Full Text PDF

Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed.

View Article and Find Full Text PDF

Therapeutic cell mimicry is an approach in nanomedicine aiming at substituting for missing or lost cellular functions employing nature-inspired concepts. Pioneered decades ago, only now is this technology empowered with the arsenal of nanotechnological tools and ready to provide radically new solutions such as assembling synthetic organelles and artificial cells. One of these tools is droplet microfluidics (D-μF), which provides the flexibility to generate cargo-loaded particles with tunable size and shape in a fast and reliable manner, an essential requirement in cell mimicry.

View Article and Find Full Text PDF

Biomimetic polymer nanocompartments (polymersomes) with preserved architecture and ion-selective membrane permeability represent cutting-edge mimics of cellular compartmentalization. Here it is studied whether the membrane thickness affects the functionality of ionophores in respect to the transport of Ca ions in synthetic membranes of polymersomes, which are up to 2.6 times thicker than lipid membranes (5 nm).

View Article and Find Full Text PDF

The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.

View Article and Find Full Text PDF

Following a biomimetic approach, we present here polymer vesicles (polymersomes) with ion selective permeability, achieved by inserting gramicidin (gA) biopores in their membrane. Encapsulation of pH-, Na(+)- and K(+)- sensitive dyes inside the polymersome cavity was used to assess the proper insertion and functionality of gA inside the synthetic membrane. A combination of light scattering, transmission electron microscopy, and fluorescence correlation spectroscopy was used to show that neither the size, nor the morphology of the polymersomes was affected by successful insertion of gA in the polymer membrane.

View Article and Find Full Text PDF

In nature there are various specific reactions for which highly selective detection or support is required to preserve their bio-specificity or/and functionality. In this respect, mimics of cell membranes and bio-compartments are essential for developing tailored applications in therapeutic diagnostics. Being inspired by nature, we present here biomimetic nanocompartments with ion-selective membrane permeability engineered by insertion of ionomycin into polymersomes with sizes less than 250 nm.

View Article and Find Full Text PDF

Here we ask the following: 1) what is the CO2 permeability (Pco2) of unilamellar liposomes composed of l-α-phosphatidylcholine (PC)/l-α-phosphatidylserine (PS) = 4:1 and containing cholesterol (Chol) at levels often occurring in biologic membranes (50 mol%), and 2) does incorporation of the CO2 channel aquaporin (AQP)1 cause a significant increase in membrane Pco2? Presently, a drastic discrepancy exists between the answers to these two questions obtained from mass-spectrometric (18)O-exchange measurements (Chol reduces Pco2 100-fold, AQP1 increases Pco2 10-fold) vs. from stopped-flow approaches observing CO2 uptake (no effects of either Chol or AQP1). A novel theory of CO2 uptake by vesicles predicts that in a stopped-flow apparatus this fast process can only be resolved temporally and interpreted quantitatively, if 1) a very low CO2 partial pressure (pCO2) is used (e.

View Article and Find Full Text PDF

We review briefly how the thinking about the permeation of gases, especially CO2, across cell and artificial lipid membranes has evolved during the last 100 years. We then describe how the recent finding of a drastic effect of cholesterol on CO2 permeability of both biological and artificial membranes fundamentally alters the long-standing idea that CO2-as well as other gases-permeates all membranes with great ease. This requires revision of the widely accepted paradigm that membranes never offer a serious diffusion resistance to CO2 or other gases.

View Article and Find Full Text PDF

Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.

View Article and Find Full Text PDF

We demonstrate that membranes consisting of certain triblock-copolymers were tight for CO₂. Using a novel approach, we provide evidence for aquaporin facilitated CO₂ diffusion. Plant aquaporins obtained from heterologous expression were inserted into triblock copolymer membranes.

View Article and Find Full Text PDF

Major challenges that confront nanoscience in medicine today include the development of efficacious therapies with minimum side effects, diagnostic methods featuring significantly higher sensitivities and selectivities, and personalized diagnostics and therapeutics for theragnostic approaches. With these goals in mind, combining biological molecules and synthetic carriers/templates, such as polymer supramolecular assemblies, represents a very promising strategy. In this critical review, we present protein-polymer systems as reaction spaces at the nano-scale in which the enzymatic reactions take place inside polymer supramolecular assembly, at its interface with the environment or in a combination of both.

View Article and Find Full Text PDF

Interactions in binary mixed monolayers from lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and amphiphilic poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline) block copolymers were studied by using the Langmuir balance technique and Brewster angle microscopy. It is shown that monolayers from the saturated lipid (DPPC) are more sensitive to the presence of polymers in the film, resulting in phase separation and the formation of pure lipid domains at high surface pressure. The morphology and composition of such phase-separated lipid-polymer films were studied by fluorescence microscopy and ToF-SIMS.

View Article and Find Full Text PDF