In an increasing number of industrial and technical processes, machine learning-based systems are being entrusted with supervision tasks. While they have been successfully utilized in many application areas, they frequently are not able to generalize to changes in the observed data, which environmental changes or degrading sensors might cause. These changes, commonly referred to as concept drift can trigger malfunctions in the used solutions which are safety-critical in many cases.
View Article and Find Full Text PDFThe world surrounding us is subject to constant change. These changes, frequently described as concept drift, influence many industrial and technical processes. As they can lead to malfunctions and other anomalous behavior, which may be safety-critical in many scenarios, detecting and analyzing concept drift is crucial.
View Article and Find Full Text PDF