Publications by authors named "Fabian Haitz"

Background: Medium-chain fatty acids are molecules with applications in different industries and with growing demand. However, the current methods for their extraction are not environmentally sustainable. The reverse β-oxidation pathway is an energy-efficient pathway that produces medium-chain fatty acids in microorganisms, and its use in Saccharomyces cerevisiae, a broadly used industrial microorganism, is desired.

View Article and Find Full Text PDF

Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by fungi of the Ustilaginaceae family in the presence of hydrophobic carbon sources like plant oils. In the present study, we investigated the structural composition of MELs produced from castor oil using seven different microorganisms and compared them to MEL structures resulting from other plant oils. Castor oil is an industrially relevant plant oil that presents as an alternative to currently employed edible plant oils like rapeseed or soybean oil.

View Article and Find Full Text PDF

Mannosylerythritol lipids (MEL) are microbial glycolipid biosurfactants with great potential for application in cosmetics and household detergents. In current biotechnological processes, they are produced by basidiomycetous fungi, the Ustilaginaceae, as a complex mixture of different chemical structures. It was the aim of this paper to study the influence of producer organisms and substrates on the resulting MEL structures with a novel high-resolution HPTLC-MALDI-TOF method.

View Article and Find Full Text PDF

Lignocellulose can be converted sustainably to fuels, power and value-added chemicals like fatty acid esters. This study presents a concept for the first eco-friendly enzymatic synthesis of economically important fatty acid sugar esters based on lignocellulosic biomass. To achieve this, beech wood cellulose fiber hydrolysate was applied in three manners: as sugar component, as part of the deep eutectic solvent (DES) reaction system and as carbon source for the microbial production of the fatty acid component.

View Article and Find Full Text PDF

The chemo-enzymatic epoxidation of Lallemantia iberica seed oil (LISO), a novel plant oil characterized by its exceptional high content of alpha-linolenic acid (> 60%), was developed using an immobilized lipase from Pseudozyma antarctica and hydrogen peroxide as oxidant. A statistical approach was used to study the effect of enzyme amount, temperature, time, and solvent amount on the oxirane oxygen content obtained during epoxidation. An oxirane oxygen content of 8.

View Article and Find Full Text PDF