A major challenge of plant biology is to unravel the genetic basis of complex traits. We took advantage of recent technical advances in high-throughput phenotyping in conjunction with genome-wide association studies to elucidate genotype-phenotype relationships at high temporal resolution. A diverse Brassica napus population from a commercial breeding programme was analysed by automated non-invasive phenotyping.
View Article and Find Full Text PDFIntrogression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new-type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new-type B.
View Article and Find Full Text PDFBreeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels.
View Article and Find Full Text PDFBackground: A large share of agriculturally and horticulturally important plant species are polyploid. Linkage maps are used to locate associations between genes and traits by breeders and geneticists. Linkage map creation for polyploid species is not supported by standard tools.
View Article and Find Full Text PDFSummary: Genome structure rearrangements are a common phenomenon in allopolyploid species. Deletions, duplications and homeologous non-reciprocal translocations (HNRT) between the highly similar subgenomes can be observed, which are known to have a large impact on phenotypic traits. Current research is limited because these rearrangements can be located genome wide only by cost intensive sequencing approaches and not reliably in high-density array genotyping data.
View Article and Find Full Text PDFBackground: Association studies are an essential part of modern plant breeding, but are limited for polyploid crops. The increased number of possible genotype classes complicates the differentiation between them. Available methods are limited with respect to the ploidy level or data producing technologies.
View Article and Find Full Text PDF