Background: FDG-PET detects hypometabolism in premanifest and symptomatic Huntington's disease (HD). A cross-sectional study suggested that whole-brain FDG-PET is capable to detect a phenotype in transgenic (tg) HD rats. Recently, a longitudinal follow-up study showed no FDG-PET changes in tgHD rats.
View Article and Find Full Text PDFPurpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness-including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches.
View Article and Find Full Text PDFRespiratory motion is known to degrade image quality in PET imaging. The necessary acquisition time of several minutes per bed position will inevitably lead to a blurring effect due to organ motion. A lot of research has been done with regards to motion correction of PET data.
View Article and Find Full Text PDFPurpose: Cardiac positron emission tomography (PET) images usually show two kinds of artifacts: the limited resolution of PET leads to partial volume effects and the motion of the heart induces blurring. These phenomena degrade the PET images and induce errors in the quantification. One method of reducing this problem is to use gated PET data.
View Article and Find Full Text PDFRespiratory and cardiac motion leads to image degradation in positron emission tomography (PET) studies of the human heart. In this paper we present a novel approach to motion correction based on dual gating and mass-preserving hyperelastic image registration. Thereby, we account for intensity modulations caused by the highly nonrigid cardiac motion.
View Article and Find Full Text PDF