ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody.
View Article and Find Full Text PDFABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds.
View Article and Find Full Text PDFABCA4 is an ATP-binding cassette (ABC) transporter that flips N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor membranes. Loss-of-function mutations cause Stargardt disease (STGD1), a macular dystrophy associated with severe vision loss. To define the mechanisms underlying substrate binding and STGD1, we determine the cryo-EM structure of ABCA4 in its substrate-free and bound states.
View Article and Find Full Text PDFUnlabelled: SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab).
View Article and Find Full Text PDFABCA4 is an ATP-binding cassette (ABC) transporter expressed in photoreceptors, where it transports its substrate, -retinylidene-phosphatidylethanolamine (-Ret-PE), across outer segment membranes to facilitate the clearance of retinal from photoreceptors. Mutations in cause Stargardt macular degeneration (STGD1), an autosomal recessive disorder characterized by a loss of central vision and the accumulation of bisretinoid compounds. The purpose of this study was to determine the molecular properties of ABCA4 variants harboring disease-causing missense mutations in the transmembrane domains.
View Article and Find Full Text PDFStargardt macular degeneration (Stargardt disease 1 [STGD1]) is caused by mutations in the gene encoding ABCA4, an ATP-binding cassette protein that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across photoreceptor membranes. Reduced ABCA4 activity results in retinoid accumulation leading to photoreceptor degeneration. The disease onset and severity vary from severe loss in visual acuity in the first decade to mild visual impairment late in life.
View Article and Find Full Text PDFPurpose: Stargardt disease (STGD1), the most common early-onset recessive macular degeneration, is caused by mutations in the gene encoding the ATP-binding cassette transporter ABCA4. Although extensive genetic studies have identified more than 1000 mutations that cause STGD1 and related ABCA4-associated diseases, few studies have investigated the extent to which mutations affect the biochemical properties of ABCA4. The purpose of this study was to correlate the expression and functional activities of missense mutations in ABCA4 identified in a cohort of Canadian patients with their clinical phenotype.
View Article and Find Full Text PDFWith rare exception, ciliated cells entering mitosis lose their cilia, thereby freeing basal bodies to serve as centrosomes in the formation of high-fidelity mitotic spindles. Cilia can be lost by shedding or disassembly, but either way, it appears that the final release may be via a coordinated severing of the nine axonemal outer doublet microtubules linking the basal body to the ciliary transition zone. Little is known about the mechanism or regulation of this important process.
View Article and Find Full Text PDF