Publications by authors named "Fabian Docagne"

Background: Anti--Methyl-d-aspartate receptor (NMDAR) autoimmune encephalitis (NMDAR AE) is an autoimmune disease characterized by severe psychiatric and neurological symptoms. While the pathogenic role of antibodies (Abs) directed against the GluN1 subunit of NMDAR is well described in this disease, the immune mechanisms involved in the generation of the autoimmune B cell response, especially the role of T helper cells, are poorly understood. Previously, we developed a B-cell-mediated mouse model of NMDAR AE by immunization with a GluN1 peptide that drives a series of symptoms that recapitulate AE such as anxiety behaviour and spatial memory impairment.

View Article and Find Full Text PDF

Intestinal immunity is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes. Recent evidence also suggests its implication in the pathogenesis of autoimmune diseases affecting the central nervous system, such as multiple sclerosis (MS). However, there is ongoing debate regarding which part of the intestinal tract contributes to the development of MS.

View Article and Find Full Text PDF

Introduction: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Recent evidence suggests that lymphocyte trafficking in the intestines could play a key role in its etiology. Nevertheless, it is not clear how intestinal tissue is involved in the disease onset nor its evolution.

View Article and Find Full Text PDF

The Groupe de réflexion avec les associations de malades (GRAM)—a joint scientist/association think tank at the French National Institute of Health and Medical Research (INSERM)—has reflected, on the basis of internal surveys and the experiences of its members, on focus points concerning good practice to help partners involved in participatory research projects. In this article, we list these focus points and highlight the need to afford partners opportunities for dialogue, in order to give good chances of success to participatory research projects, in both the interest of associations and researchers.

View Article and Find Full Text PDF

Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed.

View Article and Find Full Text PDF

Background: In multiple sclerosis (MS), disturbance of the plasminogen activation system (PAS) and blood brain barrier (BBB) disruption are physiopathological processes that might lead to an abnormal fibrin(ogen) extravasation into the parenchyma. Fibrin(ogen) deposits, usually degraded by the PAS, promote an autoimmune response and subsequent demyelination. However, the PAS disruption is not well understood and not fully characterized in this disorder.

View Article and Find Full Text PDF

The COVID-19 pandemic has once again brought to the forefront the existence of a tight link between the coagulation/fibrinolytic system and the immunologic processes. Tissue-type plasminogen activator (tPA) is a serine protease with a key role in fibrinolysis by converting plasminogen into plasmin that can finally degrade fibrin clots. tPA is released in the blood by endothelial cells and hepatocytes but is also produced by various types of immune cells including T cells and monocytes.

View Article and Find Full Text PDF

Background: Factor XII (FXII) is a serine protease that participates in the intrinsic coagulation pathway. Several studies have shown that plasma FXII exerts a deleterious role in cerebral ischemia and traumatic brain injury by promoting thrombo-inflammation. Nevertheless, the impact of FXII on neuronal cell fate remains unknown.

View Article and Find Full Text PDF

Background: Tissue plasminogen activator (tPA) is a serine protease involved in fibrinolysis. It is released by endothelial cells, but also expressed by neurons and glial cells in the central nervous system (CNS). Interestingly, this enzyme also contributes to pathological processes in the CNS such as neuroinflammation by activating microglia and increasing blood-brain barrier permeability.

View Article and Find Full Text PDF

Background: Clinical observations support the hypothesis that stressful events increase relapse occurrence in multiple sclerosis patients, while stress-reduction strategies can modulate this effect. However, a direct cause-effect relationship between stress level and relapse cannot be firmly established from these data.

Objectives: The purpose of this work was to address whether modulation of stress could interfere with symptom relapse in an animal model of multiple sclerosis with relapsing-remitting course.

View Article and Find Full Text PDF

Mucosal tissues play critical roles in health and disease as the primary barrier between the external world and the inner body, lining the digestive, respiratory, urinary, mammary, and reproductive tracts. Clinical evaluation of mucosal tissues is currently performed using endoscopy, such as ileocolonoscopy for the intestinal mucosa, which causes substantial patient discomfort and can lead to organ damage. Here, we developed a contrast agent for molecular magnetic resonance imaging (MRI) that is targeted to mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1), an adhesion molecule overexpressed by inflamed mucosal tissues.

View Article and Find Full Text PDF

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood.

View Article and Find Full Text PDF

Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization.

View Article and Find Full Text PDF

CD4 T cells differentiate into various T helper subsets characterized by distinct cytokine secreting profiles that confer them effector functions adapted to a variety of infectious or endogenous threats. Regulatory CD4 T cells are another specialized subset that plays a fundamental role in the maintenance of immune tolerance to self-antigens. Manipulating effector or regulatory CD4 T cells responses is a promising immunotherapy strategy for, respectively, chronical viral infections and cancer, or severe autoimmune diseases and transplantation.

View Article and Find Full Text PDF

Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin.

View Article and Find Full Text PDF

An alteration of parenchymal cerebrospinal fluid circulation (CSF) has been proposed to take part in the pathophysiology of multiple sclerosis. By using an intragate T1-weighted high-resolution MRI of the spinal cord of freely breathing mice injected with a gadolinium chelate in the , we show that a parenchymal CSF circulation exists in the spinal cord, in addition to that originally described in the brain. In experimental autoimmune encephalomyelitis, a model of multiple sclerosis, we show a reduction of parenchymal CSF circulation specifically in the spinal cord but not in the brain.

View Article and Find Full Text PDF

Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs.

View Article and Find Full Text PDF

New strategies for detecting disease activity in multiple sclerosis are being investigated to ameliorate diagnosis and follow-up of patients. Today, although magnetic resonance imaging (MRI) is widely used to diagnose and monitor multiple sclerosis, no imaging tools exist to predict the evolution of disease and the efficacy of therapeutic strategies. Here, we show that molecular MRI targeting the endothelial adhesion molecule P-selectin unmasks the pathological events that take place in the spinal cord of mice subjected to chronic or relapsing experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

Plasminogen activation is involved in many processes within the central nervous system, including synaptic plasticity, neuroinflammation and neurodegeneration. However, the mechanisms that regulate plasminogen activation in the brain still remain unknown. Here we demonstrate that astrocytes participate in this regulation by two mechanisms.

View Article and Find Full Text PDF

Background: The ability of oligodendrocyte progenitor cells (OPCs) to give raise to myelin forming cells during developmental myelination, normal adult physiology and post-lesion remyelination in white matter depends on factors which govern their proliferation, migration and differentiation. Tissue plasminogen activator (tPA) is a serine protease expressed in the central nervous system (CNS), where it regulates cell fate. In particular, tPA has been reported to protect oligodendrocytes from apoptosis and to facilitate the migration of neurons.

View Article and Find Full Text PDF

Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction.

View Article and Find Full Text PDF

Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator.

View Article and Find Full Text PDF

The plasminogen activation (PA) system consists in a group of proteases and protease inhibitors regulating the activation of the zymogen plasminogen into its proteolytically active form, plasmin. Here, we give an update of the current knowledge about the role of the PA system on different aspects of neuroinflammation. These include modification in blood-brain barrier integrity, leukocyte diapedesis, removal of fibrin deposits in nervous tissues, microglial activation and neutrophil functions.

View Article and Find Full Text PDF