Publications by authors named "Fabian D Conradi"

Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multiprotein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however, little is known regarding their function, regulation, and secreted effectors.

View Article and Find Full Text PDF

How thylakoid membranes are generated to form a metabolically active membrane network and how thylakoid membranes orchestrate the insertion and localization of protein complexes for efficient electron flux remain elusive. Here, we develop a method to modulate thylakoid biogenesis in the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942 by modulating light intensity during cell growth, and probe the spatial-temporal stepwise biogenesis process of thylakoid membranes in cells. Our results reveal that the plasma membrane and regularly arranged concentric thylakoid layers have no physical connections.

View Article and Find Full Text PDF

Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages.

View Article and Find Full Text PDF

Motile strains of the unicellular cyanobacterium sp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates.

View Article and Find Full Text PDF

Two truncated analogues of the polyenyl photoprotective xanthomonadin pigments have been synthesised utilising an iterative Heck-Mizoroki (HM)/iododeboronation cross coupling approach and investigated as models of the natural product photoprotective agents in bacteria. Despite the instability of these types of compounds, both analogues proved to be sufficiently stable to allow isolation, spectroscopic analysis and biological studies of their photoprotective behaviour which showed that despite their shorter polyene chain length, they retained the ability to protect bacteria from photochemical damage; i.e.

View Article and Find Full Text PDF