Publications by authors named "Fabian Aren"

This is a critical review of artificial intelligence/machine learning (AI/ML) methods applied to battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily understandable, review of general interest to the battery community. It addresses the concepts, approaches, tools, outcomes, and challenges of using AI/ML as an accelerator for the design and optimization of the next generation of batteries─a current hot topic.

View Article and Find Full Text PDF

We present CHAMPION (Chalmers hierarchical atomic, molecular, polymeric, and ionic analysis toolkit): a software developed to automatically detect time-dependent bonds between atoms based on their dynamics, classify the local graph topology around them, and analyze the physicochemical properties of these topologies by statistical physics. In stark contrast to methodologies where bonds are detected based on static conditions such as cut-off distances, CHAMPION considers pairs of atoms to be bound only if they move together and act as a bound pair over time. Furthermore, the time-dependent global bond graph is possible to split into dynamically shifting connected components or subgraphs around a certain chemical motif and thereby allow the physicochemical properties of each such topology to be analyzed by statistical physics.

View Article and Find Full Text PDF