Publications by authors named "Fabian Afonso-Grunz"

Large collections of pea symbiotic mutants were accumulated in the 1990s, but the causal genes for a large portion of the mutations are still not identified due to the complexity of the task. We applied a Mapping-by-Sequencing approach including Bulk Segregant Analysis and Massive Analysis of cDNA Ends (MACE-Seq) sequencing technology for genetic mapping the gene of pea which controls the formation of symbioses with both nodule bacteria and arbuscular-mycorrhizal fungi. For mapping we developed an -population from the cross between pea line N24 carrying the mutant allele of and the wild type NGB1238 (=JI0073) line.

View Article and Find Full Text PDF

Morphological malformations induced by tributyltin (TBT) exposure during embryonic development have already been characterized in various taxonomic groups, but, nonetheless, the molecular processes underlying these changes remain obscure. The present study provides the first genome-wide screening for differentially expressed genes that are linked to morphological alterations of gonadal tissue from chicken embryos after exposure to TBT. We applied a single injection of TBT (between 0.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression by altering the translation efficiency and/or stability of targeted mRNAs. In vertebrates, more than 50% of all protein-coding RNAs are assumed to be subject to miRNA-mediated control, but current high-throughput methods that reliably measure miRNA-mRNA interactions either require prior knowledge of target mRNAs or elaborate preparation procedures. Consequently, experimentally validated interactions are relatively rare.

View Article and Find Full Text PDF

Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro- and eukaryotic cells without prior fixation or physical disruption of the interaction.

Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression).

View Article and Find Full Text PDF

Background: Previous studies identified microRNAs (miRNAs) and messenger RNAs with significantly different expression between normal pancreas and pancreatic cancer (PDAC) tissues. Due to technological limitations of microarrays and real-time PCR systems these studies focused on a fixed set of targets. Expression of other RNA classes such as long intergenic non-coding RNAs or sno-derived RNAs has rarely been examined in pancreatic cancer.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation (SNF) in root nodules of grain legumes such as chickpea is a highly complex process that drastically affects the gene expression patterns of both the prokaryotic as well as eukaryotic interacting cells. A successfully established symbiotic relationship requires mutual signaling mechanisms and a continuous adaptation of the metabolism of the involved cells to varying environmental conditions. Although some of these processes are well understood today many of the molecular mechanisms underlying SNF, especially in chickpea, remain unclear.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3' untranslated region (3'UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3'UTR shortening accelerates disease progression, dedifferentiation and proliferation.

View Article and Find Full Text PDF

In chicken, the left and right female gonads undergo a completely different program during development. To learn more about the molecular factors underlying side-specific development and to identify potential sex- and side-specific genes in developing gonads, we separately performed next-generation sequencing-based deepSuperSAGE transcription profiling from left and right, female and male gonads of 19-day-old chicken embryos. A total of 836 transcript variants were significantly differentially expressed (p < 10(-5)) between combined male and female gonads.

View Article and Find Full Text PDF