Publications by authors named "Fabia K Andrade"

This research consolidates our group's advances in developing a therapeutic dressing with innovative enzymatic debridement, focusing on the physicochemical and in vitro biological properties of papain immobilized in wet oxidized bacterial cellulose (OxBC-Papain) dressing. OxBC membranes were produced with oxidized with NaIO, and papain was immobilized on them. They were characterized in terms of enzyme stability (over 100 days), absorption capacity, water vapor transmission (WVT), hemocompatibility, cytotoxicity, and cell adhesion.

View Article and Find Full Text PDF

This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells.

View Article and Find Full Text PDF

Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing.

View Article and Find Full Text PDF

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface.

View Article and Find Full Text PDF

Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a biopolymer of enormous value aggregation for in general industry. The vitreous humor of the eyeball from Nile tilapia contains appreciable amounts of hyaluronic acid. In this sense, the aim of this work was to extract and characterize hyaluronic acid from the eyeball of the Nile tilapia for biomedical applications, adding value to fish industry residues.

View Article and Find Full Text PDF

Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.

View Article and Find Full Text PDF

The molecular weight of chitosan (CS) may affect its physical properties and its ability to induce an appropriate host response. The biocompatibilities of CS membranes of low (LMWCS) and high (HMWCS) molecular weight were investigated by inserting these materials into the subcutaneous tissue of rats for 1-28 days and evaluating leukocyte infiltration, granulation tissue, fibrosis, arginase-1 immunostaining, as well as nuclear factor-κB (NF-κΒ) and fibroblast growth factor (FGF)-2 expressions. Both CS membranes induced a peak of leukocyte infiltration on the first day of insertion and stimulated granulation and fibrous tissue generation when compared to control.

View Article and Find Full Text PDF

Essential oils (EOs) are bioactive compounds with therapeutic potential for use as alternatives or as support to conventional treatments. However, EOs present limitations, such as sensibility to environmental factors, which can be overcome through microencapsulation. The objective of this study was to produce, by spray drying, chitosan microparticles (CMs) loaded with EO of Lemongrass (Cymbopogon flexuosus), Geranium (Pelargonium x ssp) and Copaiba (Copaifera officinalis).

View Article and Find Full Text PDF

We combined the chemical and physical methods of papain immobilization through the aldehyde groups available on oxidized bacterial cellulose (OxBC) to provide high proteolytic activity for future applications as bioactive dressing. Bacterial cellulose (BC) was obtained by the fermentation of Komagataeibacter hansenii in Hestrin-Schramm medium for 5 days, followed by purification and oxidation using NaIO. Surface response methodology was used to optimize papain immobilization (2%, w/v) for 24 h.

View Article and Find Full Text PDF

Hybrid materials, based on bacterial cellulose (BC) and hydroxyapatite (HA), have been investigated for guided bone regeneration (GBR). However, for some GBR, degradability in the physiological environment is an essential requirement. The present study aimed to explore the use of oxidized bacterial cellulose (OxBC) membranes, associated with strontium apatite, for GBR applications.

View Article and Find Full Text PDF

This study aims to produce and characterize alginate bilayer membranes composed of single membranes with varying cross-linking degrees to modulate simvastatin release, with potential to be used for wound-dressing. The single-layer and bilayer membranes were characterized by weight, thickness, surface pH, equilibrium-humidity, swelling degree, solubility, infrared spectroscopy (attenuated total reflectance Fourier-transform infrared), scanning electron microscopy, and water vapor transmission. Simvastatin diffusion and release rates were analyzed using Franz's cells; its indirect cytotoxicity was analyzed using human keratinocyte cells.

View Article and Find Full Text PDF

Wound dressings based on natural polymers are of considerable interest in the pharmaceutical industry owing to their improved performance in the human body when compared to synthetic polymers. Alginate, a polysaccharide from brown algae, is commonly studied as a wound dressing owing to its biocompatibility and biodegradability. To improve its therapeutic features and thereby increase wound healing, papain (a proteolytic enzyme from Carica papaya latex) was proposed to be incorporated.

View Article and Find Full Text PDF

Hydroxyapatite-associated bacterial cellulose (BC/HA) is a promising composite for biomedical applications. However, this hybrid composite has some limitations due to its low in vivo degradability. The objective of this work was to oxidize BC and BC/HA composites for different time periods to produce 2,3 dialdehyde cellulose (DAC).

View Article and Find Full Text PDF

In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by . Murine bone marrow-derived macrophages (BMMΦ) were treated with different doses of nBC (0.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a polymer with interesting physical properties owing to the regular and uniform structure of its nanofibers, which are formed by amorphous (disordered) and crystalline (ordered) regions. Through hydrolysis with strong acids, it is possible to transform BC into a stable suspension of cellulose nanocrystals, adding new functionality to the material. The aim of this work was to evaluate the effects of inorganic acids on the production of BC nanocrystals (BCNCs).

View Article and Find Full Text PDF

Among the strategies to improve a material's hemocompatibility, pre-coating with the tripeptide Arg-Gly-Asp (RGD) is used to favor endothelialization thus lowering thrombogenicity. The blood compatibility of native and RGD-modified bacterial cellulose (BC) was studied in this work for the first time. The plasma recalcification time and whole blood clotting results demonstrate the hemocompatibility of BC.

View Article and Find Full Text PDF

Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC-BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequence.

View Article and Find Full Text PDF

Background: Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD). The RGD sequence, present in several proteins from the extra-cellular matrix (ECM), is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion.

View Article and Find Full Text PDF