Lysine crotonylation (Kcr) is an evolutionally conserved post-translational modification (PTM) on histone proteins. However, information about Kcr and its involvement in the biology and metabolism of Toxoplasma gondii is limited. In the present study, a global Kcr proteome analysis using LC-MS/MS in combination with immune-affinity method was performed.
View Article and Find Full Text PDFLysine 2-hydroxyisobutyrylation (K) is a recently discovered and evolutionarily conserved form of protein post-translational modification (PTM) found in mammalian and yeast cells. Previous studies have shown that K plays roles in the activity of gene transcription and K-containing proteins are closely related to the cellular metabolism. In this study, a global K-containing analysis using the latest databases (ToxoDB 46, 8322 sequences, downloaded on April 16, 2020) and sensitive immune-affinity enrichment coupled with liquid chromatography-tandem mass spectrometry was performed.
View Article and Find Full Text PDFLysine malonylation (Kmal) is a new post-translational modification (PTM), which has been reported in several prokaryotic and eukaryotic species. Although Kmal can regulate many and diverse biological processes in various organisms, knowledge about this important PTM in the apicomplexan parasite is limited. In this study, we performed the first global profiling of malonylated proteins in tachyzoites using affinity enrichment and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.
View Article and Find Full Text PDFInfect Genet Evol
December 2018
Enterocytozoon bieneusi is one of the most important causative agents of microsporidiosis, causing diarrhoea the symptoms of enteric disease in humans and animals. Although there is some information on the prevalence and genotypes of E. bieneusi in China, there is still a lack of data in pigs in southern China.
View Article and Find Full Text PDFGrowth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells.
View Article and Find Full Text PDFToxoplasma gondii deploys many effector proteins in order to hijack and manipulate host cell signaling pathways, allowing parasite colonization, subversion of immune responses, and disease progression. T. gondii effector protein 14-3-3 (Tg14-3-3) promotes parasite dissemination inside the body, by enhancing the migratory ability of infected microglia and dendritic cells.
View Article and Find Full Text PDFAlthough microRNAs (miRNAs) play an important role in liver homeostasis, the extent to which they can be altered by Toxoplasma gondii infection is unknown. Here, we utilized small RNA sequencing and bioinformatic analyses to characterize miRNA expression profiles in the liver of domestic cats at 7 days after oral infection with T. gondii (Type II) strain.
View Article and Find Full Text PDFis an important zoonotic parasite. It can infect virtually all animal species and has a global distribution. However, the prevalence of in donkeys () has only been reported in Algeria and Spain, and no information is available concerning genotypes of in donkeys worldwide.
View Article and Find Full Text PDFToxoplasma gondii microneme proteins (TgMICs), secreted by micronemes upon contact with host cells, are reported to play important roles in multiple stages of the T. gondii life cycle, including parasite motility, invasion, intracellular survival, and egress from host cells. Meanwhile, during these processes, TgMICs participate in many protein-protein and protein-carbohydrate interactions, such as undergoing proteolytic maturation, binding to aldolase, engaging the host cell receptors and forming the moving junction (MJ), relying on different types of ectodomains, transmembrane (TM) domains and cytoplasmic domains (CDs).
View Article and Find Full Text PDFBackground: Giardia intestinalis is one of the most important zoonotic enteric parasites. As no information regarding prevalence and genotype of G. intestinalis in donkeys (Equus asinus) in China is available, 181 faecal samples from 48 donkeys from Jilin Province, from 104 from Shandong Province and from 29 from Liaoning Province were examined between May and December 2015.
View Article and Find Full Text PDFBackground: Toxoplasma gondii, an obligate intracellular protozoan parasite, possesses the remarkable ability to co-opt host cell machinery in order to maintain its intracellular survival. This parasite can modulate signaling pathways of its host through the secretion of polymorphic effector proteins localized in the rhoptry and dense granule organelles. One of such effectors is T.
View Article and Find Full Text PDFToxoplasma gondii is a worldwide prevalent parasite, affecting a wide range of mammals and human beings. Little information is available about the distribution of genetic diversity of T. gondii infection in minks (Neovison vison).
View Article and Find Full Text PDFToxoplasmosis is a globally spread zoonosis. The pathogen Toxoplasma gondii can hijack cellular organelles of host for replication. Although a number of important cellular life events are controlled by cell organelles, very little is known of the transcriptional changes of host cellular organelles after infection with T.
View Article and Find Full Text PDFZhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi
October 2015
The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes.
View Article and Find Full Text PDFBackground: Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants.
View Article and Find Full Text PDFBackground: Phosphoinositide 3-kinases (PI3Ks) are relatively conserved and important intracellular lipid kinases involved in signalling and other biological pathways. In the free-living nematode Caenorhabditis elegans, the heterodimeric form of PI3K consists of catalytic (AGE-1) and regulatory (AAP-1) subunits. These subunits are key components of the insulin-like signalling pathway and play roles in the regulation of the entry into and exit from dauer.
View Article and Find Full Text PDF