Publications by authors named "Fa-Feng Xu"

Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro- and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors with different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions.

View Article and Find Full Text PDF

Crystalline materials with appealing luminescent properties are attractive materials for various optoelectronic applications. The in situ bicomponent reaction of 1,2-ethylenedisulfonic acid with 1,4-di(pyrid-2-yl)benzene, 1,4-di(pyrid-3-yl)benzene, or 1,4-di(pyrid-4-yl)benzene affords luminescent crystals with hydrogen-bonded polymeric structures. Variations in the positions of the pyridine nitrogen atoms lead to alternating polymeric structures with either a ladder- or zigzag-type of molecular arrangement.

View Article and Find Full Text PDF

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence.

View Article and Find Full Text PDF

Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions.

View Article and Find Full Text PDF

3D laser displays play an important role in next-generation display technologies owing to the ultimate visual experience they provide. Circularly polarized (CP) laser emissions, featuring optical rotatory power and invariability under rotations, are attractive for 3D displays due to potential in enhancing contrast ratio and comfortability. However, the lack of pixelated self-emissive CP microlaser arrays as display panels hinders the implementation of 3D laser displays.

View Article and Find Full Text PDF

Exciton-polariton Bose-Einstein condensation (EP BEC) is of crucial importance for the development of coherent light sources and optical logic elements, as it creates a new state of matter with coherent nature and nonlinear behaviors. The demand for room temperature EP BEC has driven the development of organic polaritons because of the large binding energies of Frenkel excitons in organic materials. However, the reliance on external high-finesse microcavities for organic EP BEC results in poor compactness and integrability of devices, which restricts their practical applications in on-chip integration.

View Article and Find Full Text PDF

Information encryption and decryption have attracted particular attention; however, the applications are frequently restricted by limited coding capacity due to the indistinguishable broad photoluminescence band of conventional stimuli-responsive fluorescent materials. Here, we present a concept of confidential information encryption with photoresponsive liquid crystal (LC) lasing materials, which were used to fabricate ordered microlaser arrays through a microtemplate-assisted inkjet printing method. LC microlasers exhibit narrow-bandwidth single-mode emissions, and the wavelength of LC microlasers was reversibly modulated based on the optical isomerization of the chiral dopant in LCs.

View Article and Find Full Text PDF

Halide perovskites have shown tremendous potential for next-generation flat-panel laser displays due to their remarkable optoelectronic properties and outstanding material processability; however, the lack of a general approach for the fast growth of perovskite laser arrays capable of electrical operations impedes actualization of their display applications. Herein, a universal and robust wettability-guided screen-printing technique is reported for the rapid growth of large-scale multicolor perovskite microdisk laser arrays, which can serve as laser display panels and further be used to realize current-driven displays. The perovskite microlasers are precisely defined with controlled physical dimensions and spatial locations by such a printing strategy, and each perovskite microlaser serves as a pixel of a display panel.

View Article and Find Full Text PDF