In the vanguard of oncological advancement, this investigation delineates the integration of deep learning paradigms to refine the screening process for Anticancer Peptides (ACPs), epitomizing a new frontier in broad-spectrum oncolytic therapeutics renowned for their targeted antitumor efficacy and specificity. Conventional methodologies for ACP identification are marred by prohibitive time and financial exigencies, representing a formidable impediment to the evolution of precision oncology. In response, our research heralds the development of a groundbreaking screening apparatus that marries Natural Language Processing (NLP) with the Pseudo Amino Acid Composition (PseAAC) technique, thereby inaugurating a comprehensive ACP compendium for the extraction of quintessential primary and secondary structural attributes.
View Article and Find Full Text PDF