Publications by authors named "FP Netzer"

W- and Mo-oxides form an interesting class of materials, featuring structural complexities, stoichiometric flexibility, and versatile physical and chemical properties that render them attractive for many applications in diverse fields of nanotechnologies. In nanostructured form, novel properties and functionalities emerge as a result of quantum size and confinement effects. In this topical review, W- and Mo-oxide nanosystems are examined with particular emphasis on two-dimensional (2D) layers and small molecular-type clusters.

View Article and Find Full Text PDF

Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the atomic oxygen (AO) binding and mobility on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites.

View Article and Find Full Text PDF

Mixed CuO(2 × 1)-CuWO layers on a Cu(110) surface have been prepared by the on-surface reaction of the CuO(2 × 1) surface oxide with adsorbed (WO) clusters. The adsorption and decomposition of methanol on these well-defined CuO-CuWO surfaces has been followed by high-resolution X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), and temperature-programmed desorption (TPD) to assess the molecular surface species and their concentration, while the state of the surface oxide phases before and after methanol decomposition has been characterized by scanning tunneling microscopy (STM), low energy electron diffraction (LEED), and XPS. Surface methoxy species form the primary methanol decomposition products, which desorb partly by recombination as methanol at 200-300 K or decompose into CH and possibly CO.

View Article and Find Full Text PDF

Titanium dioxide/graphene composites have recently been demonstrated to improve the photocatalytic activity of TiO in visible light. To better understand the interactions of TiO with graphene we have investigated the growth of TiO nanoclusters on single-layer graphene/Ru(0001) using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Deposition of Ti in the O background at 300 K resulted in the formation of nanoclusters nucleating on intrinsic defects in the graphene (Gr) layer.

View Article and Find Full Text PDF

The structure and properties of ternary oxide materials at the nanoscale are poorly explored both on experimental and theoretical levels. With this work we demonstrate the successful on-surface synthesis of two-dimensional (2D) ternary oxide, MnWO and FeWO , nanolayers on a Pd(1 0 0) surface and the understanding of their new structure and phase behaviour with the help of state-of-art surface structure and spectroscopy techniques. We find that the 2D MnWO and FeWO phases, prepared under identical thermodynamic conditions, exhibit similar structural properties, reflecting the similarity of the bulk MnWO and FeWO phases with the wolframite structure.

View Article and Find Full Text PDF

The exceptional physical properties of graphene have sparked tremendous interests toward two-dimensional (2D) materials with honeycomb structure. We report here the successful fabrication of 2D iron tungstate (FeWO ) layers with honeycomb geometry on a Pt(111) surface, using the solid-state reaction of (WO) clusters with a FeO(111) monolayer on Pt(111). The formation process and the atomic structure of two commensurate FeWO phases, with (2 × 2) and (6 × 6) periodicities, have been characterized experimentally by combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) and understood theoretically by density functional theory (DFT) modeling.

View Article and Find Full Text PDF

An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu-O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions.

View Article and Find Full Text PDF

With the use of molecular manipulation in a cryogenic scanning tunneling microscope, the structure and rearrangement of sexiphenyl molecules at the buried interface of the organic film with the Cu(110) substrate surface have been revealed. It is shown that a reconstruction of the first monolayer of flat lying molecules occurs due to the van der Waals pressure from subsequent layers. In this rearrangement, additional sexiphenyl molecules are forced into the established complete monolayer and adopt an edge-on configuration.

View Article and Find Full Text PDF

The growth morphology and structure of ceria nano-islands on a stepped Au(788) surface has been investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Within the concept of physical vapor deposition, different kinetic routes have been employed to design ceria-Au inverse model catalysts with different ceria nanoparticle shapes and arrangements. A two-dimensional superlattice of ceria nano-islands with a relatively narrow size distribution (5 ± 2 nm²) has been generated on the Au(788) surface by the postoxidation method.

View Article and Find Full Text PDF

Cerium oxide is an important catalytic material known for its ability to store and release oxygen, and as such, it has been used in a range of applications, both as an active catalyst and as a catalyst support. Using scanning tunneling microscopy and Auger electron spectroscopy, we investigated oxygen interactions with CeOx nanoclusters on a complete graphene monolayer-covered Ru(0001) surface at elevated temperatures (600-725 K). Under oxidizing conditions (PO2 = 1 × 10(-7) Torr), oxygen intercalation under the graphene layer is observed.

View Article and Find Full Text PDF

Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm(-1)) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape.

View Article and Find Full Text PDF

Metal tungstates (with general formula MWO4) are functional materials with a high potential for a diverse set of applications ranging from low-dimensional magnetism to chemical sensing and photoelectrocatalytic water oxidation. For high level applications, nanoscale control of film growth is necessary, as well as a deeper understanding and characterization of materials properties at reduced dimensionality. We succeeded in fabricating and characterizing a two-dimensional (2-D) copper tungstate (CuWO4).

View Article and Find Full Text PDF

A sodium chloride monolayer on a Cu(110) surface gives rise to a highly corrugated periodic nanostripe pattern of the (100) lattice as observed by scanning tunneling microscopy and low-energy electron diffraction. As revealed by density-functional calculations, this pattern is a consequence of the frustration of the overlayer-substrate chemical bonding produced by epitaxial mismatch. The coexistence of regions of strong Cu-Cl covalent and weak nonbonding interactions leads to a chemically induced topographic modulation here realized in a two-dimensional dielectric.

View Article and Find Full Text PDF

In this work, the structure of the tetraphenylporphyrin (H2TPP) monolayer grown on the oxygen passivated Cu(110)-(2 × 1)O surface has been investigated with LT-STM and elucidated by DFT-calculations. The monolayer is commensurate with all molecules occupying the same adsorption site, but there are two molecules per unit cell. The STM images suggest alternating chirality for the molecules within one unit cell which is supported by DFT total energy calculations for monolayers on the Cu-O substrate.

View Article and Find Full Text PDF

A bottom-up approach to produce a long-range ordered superlattice of monodisperse and isomorphic metal-oxide nanoparticles (NP) supported onto an oxide substrate is demonstrated. The synthetic strategy consists of self-assembling metallic NP on an ultrathin nanopatterned aluminum oxide template followed by a morphology-conserving oxidation process, and is exemplified in the case of Ni, but is generally applicable to a wide range of metallic systems. Both fully oxidized and core-shell metal-metal-oxide particles are synthesized, up to 3-4 nm in diameter, and characterized via spectroscopic and theoretical tools.

View Article and Find Full Text PDF

We report a combined reflectance difference spectroscopy and scanning tunneling microscopy study of ultrathin α-sexithiophene (6T) films deposited on the Cu(110)-(2×1)O surface. The correlation between the layer resolved crystalline structure and the corresponding optical spectra data reveals a highly sensitive dependence of the excitonic optical properties on the layer thickness and crystalline structure of the 6T film.

View Article and Find Full Text PDF

Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression.

View Article and Find Full Text PDF

The growth of ultrathin two-dimensional manganese oxide nanostripes on vicinal Pd(1 1 N) surfaces leads to particular stable configurations for certain combinations of oxide stripe and substrate terrace widths. Scanning tunneling microscopy and high-resolution low-energy electron diffraction measurements reveal highly ordered nanostructured surfaces with excellent local and long-range order. Density functional theory calculations provide the physical origin of the stabilization mechanism of 'magic width' stripes in terms of a finite-size effect, caused by the significant relaxations observed at the stripe boundaries.

View Article and Find Full Text PDF

Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H(2)O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H(2)O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects.

View Article and Find Full Text PDF

The two-dimensional (2D) Co oxide monolayer phase with (9 × 2) structure on Pd(100) has been investigated experimentally by scanning tunneling microscopy (STM) and theoretically by density functional theory (DFT). The high-resolution STM images reveal a complex pattern which on the basis of DFT calculations is interpreted in terms of a coincidence lattice, consisting of a CoO(111)-type bilayer with significant symmetry relaxation and height modulations to reduce the polarity in the overlayer. The most stable structure displays an unusual zig-zag type of antiferromagnetic ordering.

View Article and Find Full Text PDF

Co atoms and dimers embedded in a Cu(110)(2 × 1)-O surface oxide are investigated via low-temperature STM/STS experiments and first-principles simulations. It is found that Co dimers incorporated into adjacent rows of the Cu(110)(2 × 1)-O reconstruction show Kondo resonances decoupled from each other, whereas they are antiferromagnetically coupled (and do not exhibit a Kondo effect) when they are aligned on the same row. This shows that it is possible to decouple single carriers of the Kondo effect via a proper choice of the adsorption and host geometry.

View Article and Find Full Text PDF

Well-ordered and oriented monolayers of conjugated organic molecules can offer new perspectives on surface bonding. We will demonstrate the importance of the momentum distribution, or symmetry, of the adsorbate molecules' π orbitals in relation to the states available for hybridization at the metal surface. Here, the electronic band structure of the first monolayer of sexiphenyl on Cu(110) has been examined in detail with angle-resolved ultraviolet photoemission spectroscopy over a large momentum range and will be compared to measurements of a multilayer thin film and to density functional calculations.

View Article and Find Full Text PDF

Distinct one-dimensional (1D) oxide nanowires decorating the step edges of a stepped Pd(1 1 9) surface are formed by partial and complete oxidation of a 1D Mn-Pd alloy. Under full postoxidation treatment at 470-570 K, 1D MnO(2) nanowires coupled pseudomorphically to the Pd steps are obtained. Oxidized nanowires, which maintain the basic structural pattern of the 1D Mn-Pd alloy, are instead prepared by exposure of the Mn-Pd alloy to O(2) at 90 K and subsequent short heating to 400 K.

View Article and Find Full Text PDF