Publications by authors named "FOUBERT P"

Background: Soluble triggering receptor expressed on myeloid cells-2 (sTREM-2) is a marker of macrophage and microglial activation and is increased in the cerebrospinal fluid (CSF) in multiple sclerosis (MS).

Objective: To determine the relationships among sTREM-2, T cell activation, neuroaxonal damage and clinical features of MS.

Methods: Enzyme-linked immunosorbent assays were used to measure the levels of sTREM-2, soluble CD27 (sCD27, a marker of T cell activation), neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH) in the CSF of 42 patients with MS (including nine with clinically isolated syndrome) and 15 patients with other neurological diseases (OND) and in the serum of 164 patients with MS, 87 patients with OND and 62 healthy controls.

View Article and Find Full Text PDF

The MST1R (RON) kinase is overexpressed in >80% of human pancreatic cancers, but its role in pancreatic carcinogenesis is unknown. In this study, we examined the relevance of Mst1r kinase to Kras driven pancreatic carcinogenesis using genetically engineered mouse models. In the setting of mutant Kras, Mst1r overexpression increased acinar-ductal metaplasia (ADM), accelerated the progression of pancreatic intraepithelial neoplasia (PanIN), and resulted in the accumulation of (mannose receptor C type 1) MRC1+, (arginase 1) Arg+ macrophages in the tumor microenvironment.

View Article and Find Full Text PDF

Purpose: Soft-tissue reconstruction is complicated by ischemia and reperfusion injury. Animal trials have documented the independent healing benefits of hyperbaric oxygen preconditioning (HBOP) and stem cell delivery in cutaneous flaps. We explored the role of HBOP and stem cell delivery in flap preconditioning and survival.

View Article and Find Full Text PDF

Objective: A number of studies have reported that application of autologous adipose-derived cell populations leads to improved outcome in different preclinical models of thermal burn injury. However, these studies were limited to assessment of relatively small injuries amounting to only ∼2% of total body surface area (TBSA) in which the complications associated with large burns (e.g.

View Article and Find Full Text PDF

Background: Effective prevention and treatment of hypertrophic scars (HTSs), a common consequence of deep-partial thickness injury, remain a significant clinical challenge. Previous studies from our group have shown that autologous adipose-derived regenerative cells (ADRCs) represent a promising approach to improve wound healing and, thereby, impact HTS development. The purpose of this study was to assess the influence of local delivery of ADRCs immediately following deep-partial thickness cutaneous injury on HTS development in the red Duroc (RD) porcine model.

View Article and Find Full Text PDF

Immunosuppressive myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) accumulate in tumors where they inhibit T cell-mediated antitumor immune responses and promote tumor progression. Myeloid cell PI3Kγ plays a role in regulating tumor immune suppression by promoting integrin α-dependent MDSC recruitment to tumors and by stimulating the immunosuppressive polarization of MDSCs and TAMs. Here, we show that integrin α promotes immunosuppressive polarization of MDSCs and TAMs downstream of PI3Kγ, thereby inhibiting antitumor immunity.

View Article and Find Full Text PDF

Macrophages play critical, but opposite, roles in acute and chronic inflammation and cancer. In response to pathogens or injury, inflammatory macrophages express cytokines that stimulate cytotoxic T cells, whereas macrophages in neoplastic and parasitic diseases express anti-inflammatory cytokines that induce immune suppression and may promote resistance to T cell checkpoint inhibitors. Here we show that macrophage PI 3-kinase γ controls a critical switch between immune stimulation and suppression during inflammation and cancer.

View Article and Find Full Text PDF

Purpose: To develop an approach that models the cutaneous healing that occurs in a patient with full thickness thermal burn injury complicated by total body radiation exposure sufficient to induce sub-lethal prodromal symptoms. An assessment of the effects of an autologous cell therapy on wound healing on thermal burn injury with concomitant radiation exposure was used to validate the utility of the model.

Methods: Göttingen minipigs were subjected to a 1.

View Article and Find Full Text PDF

The use of noncultured autologous stromal vascular fraction or clinical grade adipose-derived regenerative cells (ADRCs) is a promising strategy to promote wound healing and tissue repair. Nevertheless, issues regarding the optimal mode of administration remain unclear. The purpose of this study was to compare the effects of local injection and topical spray delivery of ADRCs in a porcine model of thermal burns.

View Article and Find Full Text PDF

Unlabelled: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a low 5-year survival rate, yet new immunotherapeutic modalities may offer hope for this and other intractable cancers. Here, we report that inhibitory targeting of PI3Kγ, a key macrophage lipid kinase, stimulates antitumor immune responses, leading to improved survival and responsiveness to standard-of-care chemotherapy in animal models of PDAC. PI3Kγ selectively drives immunosuppressive transcriptional programming in macrophages that inhibits adaptive immune responses and promotes tumor cell invasion and desmoplasia in PDAC.

View Article and Find Full Text PDF

Objective: Advances in tissue engineering have yielded a range of both natural and synthetic skin substitutes for burn wound healing application. Long-term viability of tissue-engineered skin substitutes requires the formation and maturation of neo-vessels to optimize survival and biointegration after implantation. A number of studies have demonstrated the capacity of Adipose Derived Regenerative Cells (ADRCs) to promote angiogenesis and modulate inflammation.

View Article and Find Full Text PDF

Endothelial progenitor cell (EPC) transplantation has beneficial effects for therapeutic neovascularization. We therefore assessed the effect of a therapeutic strategy based on EPC administration in the healing of radiation-induced damage. To improve cell therapy for clinical use, we used pretreatment with ephrin B2-Fc (Eph-B2-Fc) and/or coadministration with smooth muscle progenitor cells.

View Article and Find Full Text PDF

Lymph nodes are initial sites of tumor metastasis, yet whether the lymph node microenvironment actively promotes tumor metastasis remains unknown. We show here that VEGF-C/PI3Kα-driven remodeling of lymph nodes promotes tumor metastasis by activating integrin α4β1 on lymph node lymphatic endothelium. Activated integrin α4β1 promotes expansion of the lymphatic endothelium in lymph nodes and serves as an adhesive ligand that captures vascular cell adhesion molecule 1 (VCAM-1)(+) metastatic tumor cells, thereby promoting lymph node metastasis.

View Article and Find Full Text PDF

Tumor-associated macrophages promote tumor growth by stimulating angiogenesis and suppressing antitumor immunity. Thus, therapeutics that inhibit macrophage recruitment to tumors may provide new avenues for cancer therapy. In this study, we showed how chemoattractants stromal cell-derived growth factor 1 alpha (SDF-1α) and interleukin 1 beta (IL-1β) collaborate with myeloid cell integrin-α4β1 to promote tumor inflammation and growth.

View Article and Find Full Text PDF

Angiogenesis, the formation of new blood vessel, plays an important role for the growth and metastasis of malignant tumors. The recent identification of specific growth factors for lymphatic vessels and of new lymphatic-specific markers provided evidence for an active role of the lymphatic system during the tumor growth and metastasis processes. Tumor lymphangiogenesis has been shown to play a role in promoting tumor growth and metastasis of tumor cells to distant sites.

View Article and Find Full Text PDF

Tumor inflammation promotes angiogenesis, immunosuppression, and tumor growth, but the mechanisms controlling inflammatory cell recruitment to tumors are not well understood. We found that a range of chemoattractants activating G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and Toll-like/IL-1 receptors (TLR/IL1Rs) unexpectedly initiate tumor inflammation by activating the PI3-kinase isoform p110γ in Gr1+CD11b+ myeloid cells. Whereas GPCRs activate p110γ in a Ras/p101-dependent manner, RTKs and TLR/IL1Rs directly activate p110γ in a Ras/p87-dependent manner.

View Article and Find Full Text PDF

Recent studies have shown that lymphangiogenesis or the growth of lymphatic vessels at the periphery of tumors promotes tumor metastasis to lymph nodes. We show here that the fibronectin-binding integrin alpha4beta1 and its ligand fibronectin are novel functional markers of proliferative lymphatic endothelium. Tumors and lymphangiogenic growth factors, such as vascular endothelial growth factor-C (VEGF-C) and VEGF-A, induce lymphatic vessel expression of integrin alpha4beta1.

View Article and Find Full Text PDF

Cell-based therapy is a promising approach designed to enhance neovascularization and function of ischemic tissues. Interaction between endothelial and smooth muscle cells regulates vessels development and remodeling and is required for the formation of a mature and functional vascular network. Therefore, we assessed whether coadministration of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs) can increase the efficiency of cell therapy.

View Article and Find Full Text PDF

Endothelial progenitor cell (EPC) transplantation has beneficial effects for therapeutic neovascularization; however, only a small proportion of injected cells home to the lesion and incorporate into the neocapillaries. Consequently, this type of cell therapy requires substantial improvement to be of clinical value. Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors and their ephrin ligands are key regulators of vascular development.

View Article and Find Full Text PDF

We described the ex vivo production of mature and functional human smooth muscle cells (SMCs) derived from skeletal myoblasts. Initially, myoblasts expressed all myogenic cell-related markers such as Myf5, MyoD and Myogenin and differentiate into myotubes. After culture in a medium containing vascular endothelial growth factor (VEGF), these cells were shown to have adopted a differentiated SMC identity as demonstrated by alphaSMA, SM22alpha, calponin and smooth muscle-myosin heavy chain expression.

View Article and Find Full Text PDF

Background: Proangiogenic cell therapy based on administration of bone marrow-derived mononuclear cells (BMCs) or endothelial progenitor cells (EPCs) is now under investigation in humans for the treatment of ischemic diseases. However, mechanisms leading to the beneficial effects of BMCs and EPCs remain unclear.

Methods And Results: BMC- and CD34+-derived progenitor cells interacted with ischemic femoral arteries through SDF-1 and CXCR4 signaling and released nitric oxide (NO) via an endothelial nitric oxide synthase (eNOS)-dependent pathway.

View Article and Find Full Text PDF

Topological modifications of plasmid DNA adsorbed on a variety of surfaces were investigated by using atomic force microscopy (AFM). On mica modified with 3-aminopropyltriethoxysilane (APS) or poly-L-lysine, the interaction between the plasmid DNA and the surface "freezes" the plasmid DNA conformation deposited from solution, and the AFM images resemble the projection of the three-dimensional conformation of the plasmid DNA in solution. Modified mica with low concentrations of Mg(2+) leads to a decrease in the interaction strength between plasmid DNA and the substrate, and the AFM images reflect the relaxed or equilibrium conformation of the adsorbed plasmid DNA.

View Article and Find Full Text PDF