Publications by authors named "FOKINA A"

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

New remains of a Taymyr mammoth, including bones, bone collagen, hairs, skin, and soft (muscle and fat) tissues were studied comprehensively by mineralogical, spectroscopic, chromatographic, and isotope-geochemical methods. The results were used to infer the mammoth's biological age and diet, paleoclimatic conditions, and the mechanisms and degree of fossilization of the remains.

View Article and Find Full Text PDF

Currently, scientists are increasingly focusing on utilizing the natural flora of the planet to search for and isolate individual bioactive substances that prevent various diseases, contribute to increased life expectancy, and affect all major life-supporting systems in the human body. This study describes the examination of the composition of plant raw materials from the Siberian Federal District. The research focuses on plant specimens from the root parts of and , collected in the Kemerovo region.

View Article and Find Full Text PDF

Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end.

View Article and Find Full Text PDF

Purpose: To describe the ultrasound anatomy of the masticatory muscles based on a comparison of the results of macroscopic and ultrasound studies of the masticatory muscles in vitro.

Material And Methods: In the experimental part, a macropreparation of the masticatory muscle was studied; in a clinical example, an ultrasound of the masticatory muscles was performed on a patient with normal occlusion using the author's methods for analyzing echograms.

Results: The ultrasound anatomy of the masticatory muscles is described based on a comparison of data from the study of a macroscopic specimen and ultrasound images of the masticatory muscle of an experimental animal.

View Article and Find Full Text PDF

A template-assisted assembly approach to a C fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- or four-way branched junctions. A four-way branched oligonucleotide building block (a ) was designed for the assembly of the shell composed of three identical self-complementary DNA single strands and a single RNA strand for hybridization to the DNA oligonucleotides of the template.

View Article and Find Full Text PDF

Objective: Improvement of methods for studying the processes of demineralization of hard tissues of temporary teeth.

Material And Methods: The study included primaries second molars (=11). Samples of primary teeth were placed in a test tube with a demineralizing solution for - 1, 4, 8, 21 and 31 days.

View Article and Find Full Text PDF

To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells . Comparative analysis of the antitumor effects of vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted.

View Article and Find Full Text PDF

Some restriction-modification systems contain two DNA methyltransferases. In the present work, we have classified such systems according to the families of catalytic domains present in the restriction endonucleases and both DNA methyltransferases. Evolution of the restriction-modification systems containing an endonuclease with a NOV_C family domain and two DNA methyltransferases, both with DNA_methylase family domains, was investigated in detail.

View Article and Find Full Text PDF

New zwitter-ionic oligonucleotide derivatives containing 1,2,3,4-tetrahydroisoquinoline-7-sulfonyl phosphoramidate group are described. Automated synthesis of these compounds was carried out according to the β-cyanoethyl phosphoramidite scheme via the Staudinger reaction between 2-trifluoroacetyl-1,2,3,4-tetrahydroisoquinoline-7-sulfonyl azide and phosphite triester within oligonucleotide grafted to polymer support. 1,2,3,4-Tetrahydroisoquinoline-7-sulfonyl phosphoramidate group (THIQ) was stable under the conditions of standard oligonucleotide synthesis, including the removal of protective groups and cleavage of the oligonucleotide from the polymer support by treatment with a mixture of concentrated aqueous solutions of ammonia and methylamine (1 : 1) at 55°C.

View Article and Find Full Text PDF

Hydrogels are powerful materials that more accurately mimic the cellular microenvironment over static two-dimensional culture. Photochemical strategies enable dynamic complexity to be achieved within hydrogels to better mimic the extracellular matrix; however, many photochemical systems to pattern proteins within hydrogels are complicated by long reaction times to immobilize these proteins wherein the protein can lose activity. As proof-of-concept, we demonstrate an elegant method where photocaged proteins are immobilized in hydrogels and then directly photoactivated.

View Article and Find Full Text PDF

Detachment of fragile cell types cultured on two-dimensional (2D) surfaces has been shown to be detrimental to their viability. For example, detachment of induced pluripotent stem cell (iPSC)-derived neurons grown in vitro in 2D typically results in loss of neuronal connections and/or cell death. Avoiding cell detachment altogether by changing the properties of the substrate on which the cells are grown is a compelling strategy to maintain cell viability.

View Article and Find Full Text PDF

Objective: To analyze endoscopic treatment of choledocholithiasis in patients over 80 years old.

Material And Methods: A single-center retrospective study included 90 consecutive patients aged ≥80 years and 58 patients aged 60-79 years. Early outcomes including efficacy of calculus removal, incidence of complications and their risk factors were evaluated.

View Article and Find Full Text PDF

Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries.

View Article and Find Full Text PDF

The article presents a clinical example of the course of posttraumatic acute purulent sinusitis with reactive soft tissue phenomena due to the previous injury of the orbit by a foreign body, the introduction of the latter into orbit and the maxillary sinus result in a fracture of the lower wall of the orbit. A feature of the injury is the penetration of a foreign body through the conjunctiva of the lower eyelid and lower conjunctival fornix, without damaging the skin. This case is professionally interesting for both young doctors and experienced specialists in otolaryngology, ophthalmology, maxillofacial surgery and neurosurgery.

View Article and Find Full Text PDF

Myeloid dendritic cells (DCs) play an important role in the immune response; therefore, the search for compounds that can effectively activate DCs is a needful goal. This study was aimed to investigate the effect of synthetic CpG oligodeoxynucleotides (CpG-ODN) on the maturation and allostimulatory activity of myeloid DCs in comparison with other PAMP and DAMP molecules. For the research, we synthesized known CpG-ODN class C (SD-101 and D-SL03) containing thiophosphate internucleotide groups, and their original phosphate-modified analogues (SD-101M and D- SL03M) with mesylphosphoramide internucleotide groups (M = μ-modification).

View Article and Find Full Text PDF

Background And Aim: Now-a-days antibiotics are the main tool for correcting the pathological conditions of pigs; unfortunately, antibiotics are a potential threat to the environment, as they lead to the spread of antibiotic-resistant infections. This study aimed to study the immunomodulatory encapsulated biomolecules on piglets in the post-weaning period.

Materials And Methods: An immunomodulator based on biomolecules obtained from animal raw materials included in alginate capsules to improve absorption has been developed.

View Article and Find Full Text PDF

The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins.

View Article and Find Full Text PDF

Unlabelled: Laser corneal confocal microscopy (CCM) is a method of objective visualization of thin corneal nerve fibers (CNF), the structure of which changes in patients with diabetes mellitus (DM).

Purpose: To conduct comparative analysis of the results of CNF assessment using CCM and other known neurological instrumental techniques as well as evaluate their applicability to the early diagnosis of diabetic polyneuropathy (DPN).

Material And Methods: We examined a total of 46 patients (85 eyes) with type 1 DM and either subclinical (24 patients), or clinical-stage DPN (22 patients) and 50 patients (87 eyes) with type 2 DM (subclinical DPN in 27 patients and clinical-stage DPN in 23 patients).

View Article and Find Full Text PDF

Here we describe a DNA analog in which the mesyl (methanesulfonyl) phosphoramidate group is substituted for the natural phosphodiester group at each internucleotidic position. The oligomers show significant advantages over the often-used DNA phosphorothioates in RNA-binding affinity, nuclease stability, and specificity of their antisense action, which involves activation of cellular RNase H enzyme for hybridization-directed RNA cleavage. Biological activity of the oligonucleotide analog was demonstrated with respect to pro-oncogenic miR-21.

View Article and Find Full Text PDF

The closely related yeasts Ogataea polymorpha and O. parapolymorpha differ drastically from each other by sensitivity to the toxic phosphate analog vanadate. Search for genes underlying this difference revealed two genes, one designated as ABV1 (Alcian Blue staining, Vanadate resistance), which encodes a homologue of Saccharomyces cerevisiae Mnn4 responsible for attachment of mannosylphosphate to glycoside chains of secretory proteins, and the other designated as its S.

View Article and Find Full Text PDF

Analysis and isolation of new charge-neutral phosphoryl guanidine oligonucleotides (PGO) by vertical slab electrophoresis were tested at different pH values (3-11) or in the presence of SDS as a micelle-forming agent. The most convenient way to analyze and purify phosphoryl guanidine oligonucleotides was by denaturing PAGE (8 M urea) at pH 3. The mobility of PGO is dependent on their A + C content.

View Article and Find Full Text PDF

Breast cancer cell invasion is influenced by growth factor concentration gradients in the tumor microenvironment. However, studying the influence of growth factor gradients on breast cancer cell invasion is challenging due to both the complexities of in vivo models and the difficulties in recapitulating the tumor microenvironment with defined gradients using in vitro models. A defined hyaluronic acid (HA)-based hydrogel crosslinked with matrix metalloproteinase (MMP) cleavable peptides and modified with multiphoton labile nitrodibenzofuran (NDBF) was synthesized to photochemically immobilize epidermal growth factor (EGF) gradients.

View Article and Find Full Text PDF

Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them.

View Article and Find Full Text PDF

Development of efficient in vivo delivery systems remains a major challenge en route to clinical application of antisense technology, including RNA-cleaving molecules such as deoxyribozymes (DNAzymes). The mechanisms of oligonucleotide uptake and trafficking are clearly dependent on cell type and the type of oligonucleotide analogue. It appears likely that each particular disease target would pose its own specific requirements for a delivery method.

View Article and Find Full Text PDF