Publications by authors named "FM Bieniosek"

We describe a new method that improves upon temperature measurement by optical pyrometry. The main uncertainty in the traditional pyrometry technique is the surface emissivity, which is generally unknown and hard to measure. A common approach to deal with this problem is to measure the thermal emission at multiple wavelengths - an approach called multi-wavelength pyrometry.

View Article and Find Full Text PDF

Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.

View Article and Find Full Text PDF

During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dE_{e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

View Article and Find Full Text PDF

Longitudinal compression of a velocity-tailored, intense neutralized beam at 300 keV, 25 mA has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns.

View Article and Find Full Text PDF