We experimentally demonstrate efficient coupling of atomic fluorescence to the guided mode of a subwavelength-diameter silica fiber, an optical nanofiber. We show that fluorescence of a very small number of atoms, around the nanofiber can be readily observed through a single-mode optical fiber. We also show that such a technique enables us to probe the van der Waals interaction between atoms and surface with high precision by observing the fluorescence excitation spectrum through the nanofiber.
View Article and Find Full Text PDFPhys Rev Lett
September 2000
Parametric Raman sideband generation is investigated using strongly driven Raman coherence in solid hydrogen. We show that the Raman coherence prepared with two coaxial single-mode lasers beats with multimode laser radiation with very broad bandwidth and efficiently replicates the broadband nature to the Raman sidebands without the restriction of phase matching. We demonstrate that this efficient replication occurs mainly on the negative side of Raman detuning, where the medium adiabatically follows the antiphased state.
View Article and Find Full Text PDF